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PROBLÈMES DE CAUCHY
3

de développement limité du type (2.1) commun à tous les uk, formule qu

joue un rôle central pour le recollement au paragraphe 2.3. A ces difficulté

s'ajoute le fait que nous devons choisir les paramètres K tellement grands

que l'on n'a plus L, ~ **+1 (contrairement à la situation standard oui,
est une puissance de k),cequi a pour effet de multiplier les contraintes

sur ces paramètres (car lim Xkak# lim en general).
k —* 00 * 00 -

L'originalité du théorème réside donc dans l'assouplissement des

techniques de recollement des fonctions uk, la partie optique géométrique étant

réduite au choix trivial de la phase B(t) + c'est exactement le contraire

de la méthode décrite au chapitre 2 où l'étape délicate est la construction

de la phase (paragraphe 2.2), le reste (paragraphes 2.3 et 2.4) étant standard

(cf. Alinhac et Zuily [3], et Alinhac [1]).

F ri fin, nous tenons à remercier C. Zuily pour les discussions que nous

avons eues, tout particulièrement pour la mise au point du lemme 3.3,

ainsi que pour avoir bien voulu relire ces notes; nous lui en sommes très

reconnaissant.

Chapitre 1: Notations et résultats principaux

1.1. Comment formuler le problème

Nous nous plaçons au voisinage d'un point eR" ; l'une des

coordonnées dans R" est le temps, mais avant de l'écrire explicitement, nous

considérerons que c'est une fonction donnée <p e C00(R") à valeurs réelles

telle que d<p(x0) + 0 (afin de pouvoir la prendre comme coordonnée près

de x0).
On étudie un «phénomène physique» représenté par une fonction

u e CHR") à valeurs complexes qui est connue dans le passé (u(x) u0(x)

si <p(x) < cp(x0)) et qui satisfait une équation d'évolution Lu + c0u f,
avec L £ apc) d} où djd/dx] et les a} e CNR") sont à valeurs complexes

ainsi que le terme d'ordre zéro c0 e Cco(R"). Ici, Uq(x) et f(x) sont des

données du problème.
Nous nous intéressons à l'unicité de la solution d'un tel problème

indépendamment de son existence, ou plutôt à 1 unicité locale en x0. étant

données deux solutions u1 et u2 du problème, coïncident-elles dans tout un
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voisinage de x0? Comme tout est linéaire, cette question nous conduit
(en posant v u1 — u2) à, l'étude du noyau de l'application linéaire associée: de

Lv + c0v 0

v(x) 0 si cp(x) ^ cp(xoh

peut-on déduire que v 0 dans tout un voisinage de x0
A l'exception des résultats cités au chapitre 6, nous rechercherons

essentiellement une propriété d'unicité « stable » dans le sens suivant : sous les

hypothèses des théorèmes d'unicité (cf. théorème 1.2), la propriété d'unicité
demeurera si l'on modifie le terme d'ordre zéro c0, ou si l'on se place en

un point voisin de x0 sur la surface d'équation cp(x) cp(x0). Ce point de vue
explique que nous ne fassions pas mention du théorème d'Holmgren, ni de

théorèmes analogues; cela donne en outre à nos réciproques la forme que
l'on trouvera typiquement énoncée au théorème 1.1 ci-dessous.

1.2. Nature des hypothèses

Nous introduisons maintenant les objets algébriques sur lesquels nous*

désirons « lire » la réponse à la question que nous avons posée. Ces objets

sont construits à partir de la fonction temps (p et de l'opérateur L, et

reflètent leurs propriétés près de x0. Nous supposerons tout au long de ces
n

notes que L est non dégénéré en x0, c'est-à-dire que £ l^/^o)l2 ^ 0.
j= i

Commençons par une définition: Le problème est dit caractéristique si

Lcp(x0) 0. Cette définition est indépendante de la fonction cp pourvu que
cette dernière définisse les mêmes demi-espaces du passé et du futur. Les

chapitres 2, 3 et 4 sont consacrés à l'étude du problème non caractéristique,
tandis que le problème caractéristique est abordé au chapitre 5.

*

Nous allons construire maintenant l'objet qui permettra principalement la
discussion de l'unicité: l'algèbre de Lie associée au champ L. Par cette

expression, nous désignons l'ensemble des combinaisons linéaires à coefficients

réels des champs réels X Re L, Y Im L et de tous leurs commutateurs :

[X, 7] XY — YX, [X, [X, Y]] etc. En chaque point x, ces combinaisons

linéaires forment un sous-espace vectoriel de TxRn dont la dimension est

appelée rang de l'algèbre de Lie au point x et que nous noterons

rgj£?(x). Comme L est non dégénéré en x0, on a rg S£(x) e {1,..., n) pour
tout x voisin de x0, mais le rang de Y£ n'a aucune raison d'être constant

lorsqu'on passe d'un point à un point voisin.
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