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LIOUVILLE FUNCTION
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n 4"9b,ri 2- b, c, N),

for which

7(n) 1, Un') - 1.

We therefore have obtained the desired contradiction under the assumption

that there exist four consecutive integers n > 2iV0, for which Un) 1.

By the part of the theorem already proved, there exist at least three such

integers. Therefore (5) holds for some m0 > 2N0with n0 + 2, and we

may now assume that

7(m0-1) Umo+ 3) - 1
•

If m0 is odd, then this implies

>

so that (m0 + l)/2 > N0 is good, in contradiction to our assumption. But if

m0 is even, then defining m1 and n1 by (7), (6) holds for i 1, and

we have

3(m0 + 2) 3
_m1^ 2^0,«! - m1 ^

Thus we are back in the case already treated.

By contradiction, we therefore conclude that (1) has infinitely many

solutions for (e^Sj.Ss) (1,-1,1), and the proof of the theorem is

complete.

> 5. Concluding remarks

In the foregoing proof) the relevant property of the Liouville function

:i was that X(n) is completely multiplicative and assumes only the values ± 1.

5 Besides this, we used only the fact that U2) 7,(3) 715) 1 and

(in the proof of the lemma)

7(14) 7(16) 1, 7(29) 7(31) - 1.

The proof, as it stands, works for any completely multiplicative function

f(ri) ± 1 with these properties. By suitably modifying the proof, it is

possible to cover other classes of multiplicative functions as well.
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It would be interesting to determine those completely multiplicative
functions fin) ± 1, for which the analogue of the theorem does not hold.
Schur [3] proved that if / ^ f± where

f±(n) (± 1)* if n 3km, m 1 mod 3

-(± l)k if n 3km, m 2 mod 3

then there exists at least one n ^ 1, such that

f(n) f(n+1) f(n + 2) 1

It is likely that under the same hypotheses there are infinitely many such n.
Using arguments similar to those in section 3, one can prove this assertion
under the additional hypotheses /(2) 1 and /(3) - 1, but the general
case seems to be more complicated.

A very plausible conjecture is that the integers n, for which (1) holds,
have positive density. In the case &1 g2 s3 1, this would follow
from an analogous strengthening of the lemma by requiring (2) to hold on
a set of positive density. Whereas a very simple argument shows that the
equations X(n) X(n +1) and X(n +1) X(n — 1) hold on a set of positive
(lower) density (cf. [2]), this argument seems to break down, if n is required
to lie in a prescribed residue class, and so far we have not been able to
overcome this difficulty.
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