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LIOUVILLE FUNCTION 221

§ has infinitely many solutions, provided it has at least one solution. It

would be interesting to have an analogous result for three (or more)
consecutive values, but the above method does not work in this case.

3. PROOF OF THE THEOREM, BEGINNING

We shall show here that each of the equations

| 0 Mn) = Mn+1) = Mn—1) = 1
_ 1 and
1 M) = Mn+1) = Mn—1) = —1

| has infinitely many solutions. Since the arguments for the two cases are
; 'completely symmetric, we shall carry out the proof only in the case of
equation (2). |

~ Call an integer n > 2 “g00d”, if (2) holds for this n. We have to show
that there are infinitely many good integers. To this end we shall show that

for any positive integer n satisfying
(3) n=0(mod15), AMn+l)=An—-1)=1,

the interval

| 4
) I, = [—2,4;1 + s]

 contains a good integer. Since by the lemma (3) holds for infinitely many
positive integers n, the desired result follows.

g To prove our assertion we fix a positive integer n, for which (3) holds. We
g may suppose Mn) = — 1, since otherwise ne I, is good, and we are done.
Put N = 4n, and note that, by construction, N is divisible by 3, 4 and 5.
% From (3) we get, using the multiplicativity of the function A,

MN+4) = Md(n+1) = MH)Mntl) = 1,

| and our assumption A(n) = —1 implies
MN) = M4dn) = MHMn) = —1.

If now

oo 5N | e ST

MN+5) = MN—=5) = —1,
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then

NN MNES) (N
’”(TII)‘ e LT ’“(N)‘x<5)’

and N/5 = 4n/5 €I, is good. We may therefore suppose that at least one of §
values MN +5) and M(N —5) equals 1.

For definiteness we shall assume MN +5) = 1; the other case is treated in
exactly the same way. -

If M\N+3)=1o0or MN+6) = 1,then N + 4el,or N + 5¢1,is good.
But in the remaining case

MN+3) = MN+6) = —1

)52+

so that (N+3)/3 €1, is good.
Thus (3) implies the existence of a good integer in the interval (4),
as we had to show.

we have

4. PROOF OF THE THEOREM, CONCLUSION

So far we have proved that (1) has infinitely many solutions in the cases
€, =€ = €& = land g, = ¢, = g5 = —1. But this obviously implies that
for each of the triples (e, ¢€,,¢€3) = (1,1, —1), (-1, —1,1), (1, —1, —1) and
(—1, 1, 1) there are also infinitely many solutions to (1). It remains therefore
" to consider the triples (1, —1,1) and (—1,1, —1). Since the arguments
in both cases are the same (with +1 and —1 interchan'ged), we shall
confine ourselves to the case (g4, €,, €3) = (1, —1, 1). Accordingly, we call
n = 2 good, whenever ' ~

M+1) = Mn—1) =1, AMn) = —1.

We have to show that there are infinitely many such n.
Suppose, to get a contradiction, that there are only finitely many
good integers, all of them < N, say. Suppose further that

(5) Mn) = 1(mo<n<n,)

holds for some integers no, > my, = 2N,. We shall show that then
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