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220 A. HILDEBRAND

desired result. The drawback of this method is that it gives no indication
on how to settle the general case of the conjecture, or even the case
k = 4. It seems that for this completely new ideas are needed, and Chowla’s
remark on the difficulty of the problem appears to be justified, as far as
the general form of the conjecture is concerned.

2. A LemmMma

LemMMA. Each of the equations
M15n—1) = M15n+1) = 1
and
M15n—1) = M15n+1) = —1
holds for infinitely many positive integers n.
Proof. Given a positive integer n, > 2, define n;,i > 1, inductively by
vy = m(@nf—=3) (i=0).
It is easily checked that
mey 1= (@m+1)Cn+1)?>  (i=0),
so that
M +1) = Mmt+1l) = ... = Mnogxtl) (i=0).

~Also, it follows by induction that ng|n; for all i > 0. Therefore, taking
in turn n, = 15 and n, = 30 and noting that

M14) = M16) = 1, M29) = M31) = —1,

we obtain two infinite sequences (n*’)) and (n,'”’) with the required pro-
perties )

n'*) = 0(mod 15), MnPV+1) =1, Mn+1) = —1.

Remark. The same argument shows that for any completely multipli-
cative function f assuming only the values + 1 and for giveng,, &, = £ 1
and a > 2, the system

n = 0 (mod a)? fln—1) = &, f(n+1) = ¢,
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§ has infinitely many solutions, provided it has at least one solution. It

would be interesting to have an analogous result for three (or more)
consecutive values, but the above method does not work in this case.

3. PROOF OF THE THEOREM, BEGINNING

We shall show here that each of the equations

| 0 Mn) = Mn+1) = Mn—1) = 1
_ 1 and
1 M) = Mn+1) = Mn—1) = —1

| has infinitely many solutions. Since the arguments for the two cases are
; 'completely symmetric, we shall carry out the proof only in the case of
equation (2). |

~ Call an integer n > 2 “g00d”, if (2) holds for this n. We have to show
that there are infinitely many good integers. To this end we shall show that

for any positive integer n satisfying
(3) n=0(mod15), AMn+l)=An—-1)=1,

the interval

| 4
) I, = [—2,4;1 + s]

 contains a good integer. Since by the lemma (3) holds for infinitely many
positive integers n, the desired result follows.

g To prove our assertion we fix a positive integer n, for which (3) holds. We
g may suppose Mn) = — 1, since otherwise ne I, is good, and we are done.
Put N = 4n, and note that, by construction, N is divisible by 3, 4 and 5.
% From (3) we get, using the multiplicativity of the function A,

MN+4) = Md(n+1) = MH)Mntl) = 1,

| and our assumption A(n) = —1 implies
MN) = M4dn) = MHMn) = —1.

If now

oo 5N | e ST

MN+5) = MN—=5) = —1,
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