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ON CONSECUTIVE VALUES
OF THE LIOUVILLE FUNCTION

by Adolf HILDEBRAND

ABSTRACT: It is shown that for every choice of ¢ = + 1,i = 1,2, 3,
i there exist infinitely many positive integers n, such that Mn+i) = &,
¢ i = 1,2, 3, where A denotes the Liouville function. 1)

1. INTRODUCTION

Let Mn) denote the Liouville function, ie. M(n) = + 1 or — 1 according
as the number of prime factors of n (counted with multiplicity) is even
or odd. It is natural to expect that the sequence (AMn)) behaves like a
random sequence of + signs. A particularly attractive and highly plausible
conjecture is that every finite “block” of + signs occurs in this sequence
infinitely often, ie. for any given numbers g = + 1,1 < i < k, there are
infinitely many integers n > 1, such that

? Whereas for k = 1 and k = 2 this conjecture holds trivially, there are
8  no results known in the literature for larger values of k. In [1, p. 95,
problem 56], Chowla states the above conjecture and remarks that “for
k > 3, this seems an extremely hard conjecture”. The purpose of this paper
is to prove the conjecture in the first non-trivial case k = 3.

A THEOREM. For any choice of ¢ = *+ 1,i = 1,2,3, there are infinitely
g many positive integers n such that

# (1) Mnt+i) =g (i=1,2,3).

We shall use for the proof an “ad hoc” method, which leads in a

' relatively simple way and using only very elementary arguments to the

) 1980 A.M.S. Subject Classification : Primary 10 H 25, Secondary 10 K 20, 10 A 20. -
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desired result. The drawback of this method is that it gives no indication
on how to settle the general case of the conjecture, or even the case
k = 4. It seems that for this completely new ideas are needed, and Chowla’s
remark on the difficulty of the problem appears to be justified, as far as
the general form of the conjecture is concerned.

2. A LemmMma

LemMMA. Each of the equations
M15n—1) = M15n+1) = 1
and
M15n—1) = M15n+1) = —1
holds for infinitely many positive integers n.
Proof. Given a positive integer n, > 2, define n;,i > 1, inductively by
vy = m(@nf—=3) (i=0).
It is easily checked that
mey 1= (@m+1)Cn+1)?>  (i=0),
so that
M +1) = Mmt+1l) = ... = Mnogxtl) (i=0).

~Also, it follows by induction that ng|n; for all i > 0. Therefore, taking
in turn n, = 15 and n, = 30 and noting that

M14) = M16) = 1, M29) = M31) = —1,

we obtain two infinite sequences (n*’)) and (n,'”’) with the required pro-
perties )

n'*) = 0(mod 15), MnPV+1) =1, Mn+1) = —1.

Remark. The same argument shows that for any completely multipli-
cative function f assuming only the values + 1 and for giveng,, &, = £ 1
and a > 2, the system

n = 0 (mod a)? fln—1) = &, f(n+1) = ¢,
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§ has infinitely many solutions, provided it has at least one solution. It

would be interesting to have an analogous result for three (or more)
consecutive values, but the above method does not work in this case.

3. PROOF OF THE THEOREM, BEGINNING

We shall show here that each of the equations

| 0 Mn) = Mn+1) = Mn—1) = 1
_ 1 and
1 M) = Mn+1) = Mn—1) = —1

| has infinitely many solutions. Since the arguments for the two cases are
; 'completely symmetric, we shall carry out the proof only in the case of
equation (2). |

~ Call an integer n > 2 “g00d”, if (2) holds for this n. We have to show
that there are infinitely many good integers. To this end we shall show that

for any positive integer n satisfying
(3) n=0(mod15), AMn+l)=An—-1)=1,

the interval

| 4
) I, = [—2,4;1 + s]

 contains a good integer. Since by the lemma (3) holds for infinitely many
positive integers n, the desired result follows.

g To prove our assertion we fix a positive integer n, for which (3) holds. We
g may suppose Mn) = — 1, since otherwise ne I, is good, and we are done.
Put N = 4n, and note that, by construction, N is divisible by 3, 4 and 5.
% From (3) we get, using the multiplicativity of the function A,

MN+4) = Md(n+1) = MH)Mntl) = 1,

| and our assumption A(n) = —1 implies
MN) = M4dn) = MHMn) = —1.

If now

oo 5N | e ST

MN+5) = MN—=5) = —1,
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then

NN MNES) (N
’”(TII)‘ e LT ’“(N)‘x<5)’

and N/5 = 4n/5 €I, is good. We may therefore suppose that at least one of §
values MN +5) and M(N —5) equals 1.

For definiteness we shall assume MN +5) = 1; the other case is treated in
exactly the same way. -

If M\N+3)=1o0or MN+6) = 1,then N + 4el,or N + 5¢1,is good.
But in the remaining case

MN+3) = MN+6) = —1

)52+

so that (N+3)/3 €1, is good.
Thus (3) implies the existence of a good integer in the interval (4),
as we had to show.

we have

4. PROOF OF THE THEOREM, CONCLUSION

So far we have proved that (1) has infinitely many solutions in the cases
€, =€ = €& = land g, = ¢, = g5 = —1. But this obviously implies that
for each of the triples (e, ¢€,,¢€3) = (1,1, —1), (-1, —1,1), (1, —1, —1) and
(—1, 1, 1) there are also infinitely many solutions to (1). It remains therefore
" to consider the triples (1, —1,1) and (—1,1, —1). Since the arguments
in both cases are the same (with +1 and —1 interchan'ged), we shall
confine ourselves to the case (g4, €,, €3) = (1, —1, 1). Accordingly, we call
n = 2 good, whenever ' ~

M+1) = Mn—1) =1, AMn) = —1.

We have to show that there are infinitely many such n.
Suppose, to get a contradiction, that there are only finitely many
good integers, all of them < N, say. Suppose further that

(5) Mn) = 1(mo<n<n,)

holds for some integers no, > my, = 2N,. We shall show that then
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(6) Mn) = U(m;<n<m)

holds for all i > 0, where m; and n; are defined inductively by

3m; + 1 3n; | .
- (7) mi+1:[m12+ ], ni+1:[;:|(l>0)-

This will easily lead to the desired contradiction.
By our assumption (5), (6) holds for i = 0. Assume now that (6) does
not hold for all i > 0, and let i > O be minimal such that (6) holds for i

and fails for i + 1. Thus, for some n € [m;,q,n+1], which we shall fix,
we have Mn) = —1. Write

(8) 2n = 3n’ + 0(8€{0, 1, —1}).

From (7) we get

3m; < 2m;,q < 2n < 2n;4 4 < 3my,

so that

4

_ m,<n <n;,
and hence by (6) (which we assumed to hold for i)
AM3n) = —Mn') = — 1.
Since, by our assumption Mn) = — 1,
M2n) = — Mn) = 1,

we cannot have © = 0 in (8). The arguments in the cases 8 = + 1 being
“identical, we shall henceforth assume that (8) holds with 6 = 1.
We must have

M2(n—1)) = AGn' —1) = — 1,
. since otherwise 3n’ would be good and
3n' = 3m; = 3my > N,,

¥ in contradiction to our assumption. Also, since

, 2 2 2 (T3n,
m<n +1= ’3‘('1‘*‘1) < [g(nin‘i'l)] = [§<[Z]+ 1)} sh,

we have by (6)

M2n+1) = MBI +1) = — M +1) = — 1.
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These two identities imply
Mntl) = — M2(nt1) =

and since Mn) = — 1, we conclude that n(>N,) is good and therefore arrive
at a contradiction.

Thus (5) (with ny>m,>2N,) implies (6) for all i > 0. To derive from
this the desired contradiction, we suppose first that (5) holds for some
ng > my = 2N, satisfying

(9) ‘ .no—mo>3.

In other words, we suppose (for the moment) that there exist four consecutive
integers n > 2N,, for which Mn) = 1. Putting d, = n, — m;, we have, by
the recursion formulae (7),

3 3 2
dioy > 5di =1 =2 d< 3di> (i=0)

Taking into account (9), we obtain by induction in turn

d>=>3 (=0
7 i
dz = 3<g> (120),
and finally
3\ ¢ i 2 3\
>(3) I(1-5)><() wo
‘where

Since on the other hand by (7)

3 i
d; < n; < (") ny (i=0),

we see from (6), that there are arbitrary large values of x, such that

A(n) is constant in the interval [x(1—¢), x], where ¢ = C/n,. But this is
impossible since, for x suﬂimently large every such interval contains integers n
and n’ of the form a ‘
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n o= 4% pn' = 2-49%a,b,c, deN),

| for which |
AMn) =1, M) = —1.

| We therefore have obtained the desired contradiction under the assumption
' that there exist four consecutive integers n = 2N,, for which Mn) = L

! By the part of the theorem already proved, there exist at least three such
| integers. Therefore (5) holds for some my > 2N, with n, = mo + 2, and we

| may now assume that

Mmo—1) = Mmo+3) = — 1.

| 1f m, is odd, then this implies

)\’mo—‘l me0+3 =1,xm0+1 =_1,
2 2 2

{ so that (mo+ 1)/2 > N, is good, in contradiction to our assumption. But if
mg is even, then defining m, and n; by (7), (6) holds for i = 1, and
I we have

B 3(my+2) 3myg
2 2

= 3.

my; = 2Ng,n; — my

Thus we are back in the case already treated.
By contradiction, we therefore conclude that (1) has infinitely many
solutions for (g,,¢€,,¢3) = (1, —1, 1), and the proof of the theorem is

| complete.

5. CONCLUDING REMARKS

In the foregoing proof, the relevant property of the Liouville function
was that Mn) is completely multiplicative and assumes only the values + 1.
* Besides this, we used iny the fact that M2) = M3) = M5) = — 1 and
§ (in the proof of the lemma)

M14) = M16) = 1, M29) = A31) = — 1.

" The proof, as it stands, works for any completely multiplicative function
f(n) = + 1 with these properties. By suitably modifying the proof, it is
possible to cover other classes of multiplicative functions as well.




226 A. HILDEBRAND

It would be interesting to determine those completely multiplicative
functions f(n) = + 1, for which the analogue of the theorem does not hold.
Schur [3] proved that if f % f,, where

(1 if n=3mm
(1) if n=3mm

1mod 3,

fi(”)z{— 2mod 3,

then there exists at least one n > 1, such that

J) = fr+1) = f(n+2) = 1.

It is likely that under the same hypotheses there are infinitely many such n.
Using arguments similar to those in section 3, one can prove this assertion
under the additional hypotheses f(2) = 1 and f (3) = — 1, but the general
case seems to be more complicated.

A very plausible conjecture is that the integers n, for which (1) holds,
have positive density. In the case &, = €, = €3 = 1, this would follow
from an analogous strengthening of the lemma by requiring (2) to hold on
a set of positive density. Whereas a very simple argument shows that the
equations Mn) = Mn+1) and Mn+1) = Mn—1) hold on a set of positive
(lower) density (cf. [2]), this argument seems to break down, if n is required
to lie in a prescribed residue class, and so far we have not been able to
overcome this difficulty.
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