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216 H. OSBORN

1.1 Definition : The third product of any two elements A and B of End A p V

is given by A x B a" x((aA) (aB)) e Tlp End Ap F, where (aA) (aB) is the

composition product of the shuffle products aA e '1 • A and aB e '1 • B.

Since the composition product is associative the third product is trivially
associative. Furthermore, if 70 e End A0 F represents the unit element in

Tlp End A p V with respect to the shuffle product one has

70 x A a_1((a/0) (aA)) a-1((e'7) (aA)) a-1(l(aA)) a-1(aA) A

and similarly A x 70 A for any Aenp End Ap V; that is, 70 is also the

unit element of Ylp End A p V with respect to the third product. The rationale
for introducing the third product appears in the next section.

2. The trace

We now specialize the arbitrary TCmodule F of the preceding section.

2.1 Definition: A module F over a commutative ring R with unit is

traceable of rank n > 0 if and only if End An V is a free R-module

of rank one.

If A " F is itself free of rank one then F is clearly traceable of rank n.

However, End An V can be free of rank one with no such condition on

A" V. For example, let X be any paracompact hausdorff space, let R

be the ring C(X) of continuous real-valued functions on X, and let V

be the C(X)-module of continuous sections of a real n-plane bundle £ over

X ; then V is traceable of rank n. However An V is itself free of rank one

if and only if £ is orientable.
Flanders [1] showed for any module V over a commutative ring with

unit that if A" F is free of rank one then Ap V 0 for every p > n\

a similar argument shows that if F is traceable of rank n > 0 then

End Ap V 0 for every p > n. Thus if F is traceable of rank n > 0

there is no distinction between the direct product np End A p V and the direct

sum llp End Ap V. Consequently the third product of Definition 1.1 can be

regarded as a product in Up End Ap V whenever F is traceable.

If F is traceable of rank n then every element of End A" F is scalar

multiplication by a unique element of the commutative ground ring R

with unit. For example, for any A g 11
p

End Ap V and each p 0,..., n let
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(ocA)p e End Ap V be the pth component of aA e Up End Ap V. Then

(aA)n e End A " V is scalar multiplication by a unique element of R.

2.2 Definition : If V is a traceable module of rank n > 0 over a commutative

ground ring R with unit, the trace of any A e II p
End Ap V is the unique

element tr A e R such that (aA)„ (tr A)/„ e End An V, for the identity

endomorphism /„ e End An V.

For example, if A e End V then (ari)„ A • /„_! for the identity
endomorphism /„-iE End A"-1 V. One easily verifies that if V is a free R-

module of rank n then the classical trace of A is precisely that element

tr A e jR such that A • /„_x (tr A)In e End A" V.

2.3 Theorem. Let IIp End A p V be the endomorphism algebra generated

by the endomorphisms of a traceable module V, multiplication being the third

product; then the trace is an algebra homomorphism IIp End Ap V -+ R

over the ground ring R. Specifically, both tr(A + B) tr A + tr B and

tr(AxB) - (tr A) (tr B) for any elements A and B of IIp End Ap V.

Proof. Additivity of the trace is trivial. To show that the trace also

respects the third product suppose that V is traceable of rank n, and let

(aA)p,(aB)p and a(A x B)p denote the components of aA, aB and a(A x B)
in End Ap V for each p 0,..., n. By the definition A x B a-1((aA) (aB))
of the third product one has a(A x B) (aA) (aB) for the composition
product (aA) (aB), that is, II p a(A x B)p IIp(aA)p (aB)p. In particular
a(A x B)„ (aA)„ (aB)„ in the nth component End An V, so that

tr(A x B)/„ ((tr A)/„) ((tr B)/„) (tr A) (tr B)/„

by definition of the trace ; since End An V is free on the single generator /„
this implies tr(A x B) (tr A) (tr B) as claimed.

3. Properties of the third product

We now establish several properties of the third product. Although these
properties do not require the K-module V to be traceable, we shall later
impose a condition on elements of the /^-module IIr End Ar V itself; the
condition will automatically be satisfied in the applications.

Let V be any module over a commutative ring R with unit, and
le: A and B be elements of the direct product IIr End Ar V whose only
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