THE TRACE AS AN ALGEBRA HOMOMORPHISM

Autor(en): Osborn, Howard
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 31 (1985)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
16.05.2024

Persistenter Link: https://doi.org/10.5169/seals-54566

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

THE TRACE AS AN ALGEBRA HOMOMORPHISM

by Howard Osborn

0. Introduction

Let A be any endomorphism of an appropriately restricted module V over a commutative ring with unit. The coefficients of the characteristic polynomial of A are the elementary invariants of A, being traces of A induced endomorphisms of the exterior powers $\wedge^{p} V$. Similarly the sums-ofpowers invariants of A are traces of the compositions $A, A A, \ldots$ of A with itself. For example, if V is free of rank n and A is represented by a diagonal matrix with diagonal entries t_{1}, \ldots, t_{n}, then the elementary invariants and the sums-of-powers invariants are the usual elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$ and sums-of-powers polynomials s_{1}, s_{2}, \ldots, respectively, in t_{1}, \ldots, t_{n}. Since s_{1}, s_{2}, \ldots can be expressed as the Newton polynomials in $\sigma_{1}, \ldots, \sigma_{n}$ one can easily use an appropriate "splitting principle" to prove that the sums-of-powers invariants of any endomorphism A of an appropriately restricted module V are the Newton polynomials in the elementary invariants of the same endomorphism A. The technique applies equally well to other trace-induced invariants of A.

In this intentionally elementary note such relations among the invariants of A are presented from a different point of view as images under the trace of identities in a new endomorphism algebra associated to the module V. Specifically, if End $\wedge^{p} V$ denotes the module of endomorphisms of the $p^{\text {th }}$ exterior power $\wedge^{p} V$ of V, then one can provide the direct sum \amalg_{p} End $\wedge^{p} V$ with a new product for which the trace becomes an algebra homomorphism onto the ground ring, preserving products as well as sums. There are universal identities in \amalg_{p} End $\wedge^{p} V$ which express relations among the various endomorphisms induced by any endomorphism A of V itself, and one applies the trace to obtain corresponding identities among the invariants of A in the ground ring. The Newton identities are presented in this form to illustrate the technique.

[^0]
1. Endomorphism algebras

In this section V will be an arbitrary module over a commutative ring R with unit, and for each $p \geqslant 0 \wedge^{p} V$ will be its $p^{\text {th }}$ exterior power and End $\wedge^{p} V$ will be the R-module of endomorphisms $\wedge^{p} V \rightarrow \wedge^{p} V$; Π_{p} End $\wedge^{p} V$ will be the direct product of the R-modules End $\wedge^{p} V$. We shall define three distinct products in Π_{p} End $\wedge^{p} V$; the first two products are standard, and they will be used to define the third product. If $\wedge^{p} V$ itself vanishes for sufficiently large $p \geqslant 0$ the direct product Π_{p} End $\wedge^{p} V$ and the direct sum \amalg_{p} End $\wedge^{p} V$ agree; although this special condition will be satisfied in later sections the definitions in this section will be formulated in complete generality for the direct product Π_{p} End $\wedge^{p} V$.

Elements of Π_{p} End $\wedge^{p} V$ will be indicated by boldface capital letters $\mathbf{A}, \mathbf{B}, \ldots$, the $p^{\text {th }}$ components being $A_{p}, B_{p}, \ldots \in$ End $\wedge^{p} V$ for each $p \geqslant 0$. The simplest product in Π_{p} End $\wedge^{p} V$ is induced by compositions: the $p^{\text {th }}$ component of the composition product $\mathbf{A B} \in \Pi_{p}$ End $\wedge^{p} V$ is the usual composition $A_{p} B_{p} \in$ End $\wedge^{p} V$ of the endomorphisms A_{p} and B_{p} of $\wedge^{p} V$, where $A_{p} B_{q}=0$ for $p \neq q$. Trivially Π_{p} End $\wedge^{p} V$ is an associative R-algebra with respect to the composition product, and there is a two-sided unit element \mathbf{I} whose $p^{\text {th }}$ component is the identity endomorphism $I_{p} \in$ End $\wedge^{p} V$ for each $p \geqslant 0$.

There is another reasonably familiar product in Π_{p} End $\wedge^{p} V$, the product of $A_{p} \in$ End $\wedge^{p} V$ and $B_{q} \in$ End $\wedge^{q} V$ providing an element

$$
A_{p} \cdot B_{q} \in \text { End } \wedge^{p+q} V
$$

for each $p \geqslant 0$ and each $q \geqslant 0$. Since elements of End $\wedge^{p+q} V$ are uniquely defined in terms of the behavior on exterior products $x_{1} \wedge \ldots \wedge x_{p+q} \in \wedge^{p+q} V$, it suffices to require that

$$
\left(A_{p} \cdot B_{q}\right)\left(x_{1} \wedge \ldots \wedge x_{p+q}\right)=\sum_{\pi} \varepsilon_{\pi} A_{p}\left(x_{\pi 1} \wedge \ldots \wedge x_{\pi p}\right) \wedge B_{q}\left(x_{\pi(p+1)} \wedge \ldots \wedge x_{\pi(p+q)}\right)
$$

where the sum is computed over all permutations π of $\{1, \ldots, p+q\}$ such that both $\pi 1<\ldots<\pi p$ and $\pi(p+1)<\ldots<\pi(p+q)$, and where ε_{π} is the parity ± 1 of the permutation π. Such "shuffle products" $A_{p} \cdot B_{q} \in$ End $\wedge^{p+q} V$ provide a unique shuffle product $\mathbf{A} \cdot \mathbf{B} \in \Pi_{r}$ End $\wedge^{r} V$ of any two elements \mathbf{A} and \mathbf{B} in Π_{r} End $\wedge^{r} V$.

One easily verifies that the shuffle product is associative and strictly commutative; specifically, $A_{p} \cdot B_{q}=B_{q} \cdot A_{p} \in$ End $\wedge^{p+q} V$ with no plus-or-
minus signs. For example, for $p=1$ and $q=1$ one has

$$
\begin{gathered}
\left(A_{1} \cdot B_{1}\right)\left(x_{1} \wedge x_{2}\right)=A_{1} x_{1} \wedge B_{1} x_{2}-A_{1} x_{2} \wedge B_{1} x_{1} \\
=-B_{1} x_{2} \wedge A_{1} x_{1}+B_{1} x_{1} \wedge A_{1} x_{2}=\left(B_{1} \cdot A_{1}\right)\left(-x_{2} \wedge x_{1}\right) \\
=\left(B_{1} \cdot A_{1}\right)\left(x_{1} \wedge x_{2}\right),
\end{gathered}
$$

hence $A_{1} \cdot B_{1}=B_{1} \cdot A_{1} \in$ End $\wedge^{2} V$. The algebra Π_{p} End $\wedge^{p} V$ has a unique (two-sided) unit element with respect to the shuffle product, whose only nonzero component is the identity endomorphism I_{0} of $\wedge^{0} V$.

For any endomorphism A of V itself and any $p \geqslant 0$ there is a welldefined element $A_{p} \in$ End $\wedge^{p} V$ such that

$$
A_{p}\left(x_{1} \wedge \ldots \wedge x_{p}\right)=A x_{1} \wedge \ldots \wedge A x_{p}
$$

for any $x_{1} \wedge \ldots \wedge x_{p} \in \wedge^{p} V$; in particular $A_{1}=A$. Observe that the p-fold shuffle product $A^{\cdot p}=A \cdot \ldots \cdot A$ is defined by

$$
A^{\bullet p}\left(x_{1} \wedge \ldots \wedge x_{p}\right)=\sum_{\pi} \varepsilon_{\pi} A x_{\pi 1} \wedge \ldots \wedge A x_{\pi p}
$$

the summation extending overall p ! permutations π of $\{1, \ldots, p\}$. Since $\varepsilon_{\pi} A x_{\pi 1} \wedge \ldots \wedge A x_{\pi p}=A x_{1} \wedge \ldots \wedge A x_{p}$ for each permutation π it follows that $A^{\cdot p}=p!A_{p}$. For this reason A_{p} can reasonably be written $\frac{1}{p!} A^{\cdot p}$, without requiring the ground ring to contain the element $\frac{1}{p!}$. Thus the direct product of the elements $A_{p}\left(=\frac{1}{p!} A^{\cdot p}\right)$ over all $p \geqslant 0$ is essentially an exponential $e^{\cdot A} \in \Pi_{p}$ End $\wedge^{p} V$. One easily verifies that $e^{\cdot A} \cdot e^{\cdot(-A)}=I_{0}=e^{\cdot(-A)} \cdot e^{\cdot A}$, where $I_{0} \in$ End $\wedge^{0} V$ represents the unit element in Π_{p} End $\wedge^{p} V$ with respect to the shuffle product.

For each $p \geqslant 0$ the p-fold shuffle product $I^{\bullet p}$ of the identity endomorphism $I \in$ End V satisfies $\frac{1}{p!} I^{{ }^{p}}=I_{p}$, where I_{p} is the identity endomorphism in End $\wedge^{p} V$. Hence $e^{\cdot I}$ is precisely the two-sided unit element \mathbf{I} of Π_{p} End $\wedge^{p} V$ with respect to the composition product. Since

$$
e^{\cdot I} \cdot e^{\cdot(-I)}=I_{0}=e^{\cdot(-I)} \cdot e^{\cdot I},
$$

where $I_{0} \in$ End $\wedge^{0} V$ represents the unit element with respect to the shuffle product, one can therefore define an invertible map α of Π_{p} End $\wedge^{p} V$ into itself by letting $\alpha \mathbf{A} \in \Pi_{p}$ End $\wedge^{p} V$ be the shuffle product $e^{\cdot I} \cdot \mathbf{A}$ for any $\mathbf{A} \in \Pi_{p}$ End $\wedge^{p} V$; the inverse α^{-1} of α is given by $\alpha^{-1} \mathbf{A}=e^{\cdot(-I)} \cdot \mathbf{A}$.

1.1 Definition: The third product of any two elements \mathbf{A} and \mathbf{B} of Π_{p} End $\wedge^{p} V$

 is given by $\mathbf{A} \times \mathbf{B}=\alpha^{-1}((\alpha \mathbf{A})(\alpha \mathbf{B})) \in \Pi_{p}$ End $\wedge^{p} V$, where $(\alpha \mathbf{A})(\alpha \mathbf{B})$ is the composition product of the shuffle products $\alpha \mathbf{A}=e^{\cdot I} \cdot \mathbf{A}$ and $\alpha \mathbf{B}=e^{\cdot I} \cdot \mathbf{B}$.Since the composition product is associative the third product is trivially associative. Furthermore, if $I_{0} \in$ End $\wedge^{0} V$ represents the unit element in Π_{p} End $\wedge^{p} V$ with respect to the shuffle product one has

$$
I_{0} \times \mathbf{A}=\alpha^{-1}\left(\left(\alpha I_{0}\right)(\alpha \mathbf{A})\right)=\alpha^{-1}\left(\left(e^{\cdot I}\right)(\alpha \mathbf{A})\right)=\alpha^{-1}(\mathbf{I}(\alpha \mathbf{A}))=\alpha^{-1}(\alpha \mathbf{A})=\mathbf{A}
$$

and similarly $\mathbf{A} \times I_{0}=\mathbf{A}$ for any $\mathbf{A} \in \Pi_{p}$ End $\wedge^{p} V$; that is, I_{0} is also the unit element of Π_{p} End $\wedge^{p} V$ with respect to the third product. The rationale for introducing the third product appears in the next section.

2. The trace

We now specialize the arbitrary R-module V of the preceding section.

2.1 Definition: A module V over a commutative ring R with unit is

 traceable of rank $n>0$ if and only if End $\wedge^{n} V$ is a free R-module of rank one.If $\wedge^{n} V$ is itself free of rank one then V is clearly traceable of rank n. However, End $\wedge^{n} V$ can be free of rank one with no such condition on $\wedge^{n} V$. For example, let X be any paracompact hausdorff space, let R be the ring $C(X)$ of continuous real-valued functions on X, and let V be the $C(X)$-module of continuous sections of a real n-plane bundle ξ over X; then V is traceable of rank n. However $\wedge^{n} V$ is itself free of rank one if and only if ξ is orientable.

Flanders [1] showed for any module V over a commutative ring with unit that if $\wedge^{n} V$ is free of rank one then $\wedge^{p} V=0$ for every $p>n$; a similar argument shows that if V is traceable of rank $n>0$ then End $\wedge^{p} V=0$ for every $p>n$. Thus if V is traceable of rank $n>0$ there is no distinction between the direct product Π_{p} End $\wedge^{p} V$ and the direct sum \amalg_{p} End $\wedge^{p} V$. Consequently the third product of Definition 1.1 can be regarded as a product in \amalg_{p} End $\wedge^{p} V$ whenever V is traceable.

If V is traceable of rank n then every element of End $\wedge^{n} V$ is scalar multiplication by a unique element of the commutative ground ring R with unit. For example, for any $\mathbf{A} \in \amalg_{p}$ End $\wedge^{p} V$ and each $p=0, \ldots, n$ let
$(\chi \mathbf{A})_{p} \in$ End $\wedge^{p} V$ be the $p^{\text {th }}$ component of $\alpha \mathbf{A} \in \amalg_{p}$ End $\wedge^{p} V$. Then $(\alpha \mathbf{A})_{n} \in$ End $\wedge^{n} V$ is scalar multiplication by a unique element of R.
2.2 Definition: If V is a traceable module of rank $n>0$ over a commutative ground ring R with unit, the trace of any $\mathbf{A} \in \amalg_{p}$ End $\wedge^{p} V$ is the unique element $\operatorname{tr} \mathbf{A} \in R$ such that $(\alpha \mathbf{A})_{n}=(\operatorname{tr} \mathbf{A}) I_{n} \in$ End $\wedge^{n} V$, for the identity endomorphism $I_{n} \in$ End $\wedge^{n} V$.

For example, if $A \in \operatorname{End} V$ then $(\alpha A)_{n}=A \cdot I_{n-1}$ for the identity endomorphism $I_{n-1} \in$ End $\wedge^{n-1} V$. One easily verifies that if V is a free R module of rank n then the classical trace of A is precisely that element $\operatorname{tr} A \in R$ such that $A \cdot I_{n-1}=(\operatorname{tr} A) I_{n} \in$ End $\wedge^{n} V$.
2.3 Theorem. Let \amalg_{p} End $\wedge^{p} V$ be the endomorphism algebra generated by the endomorphisms of a traceable module V, multiplication being the third product; then the trace is an algebra homomorphism L_{p} End $\wedge^{p} V \xrightarrow{\text { tr }} R$ over the ground ring R. Specifically, both $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr} \mathbf{A}+\operatorname{tr} \mathbf{B}$ and $\operatorname{tr}(\mathbf{A} \times \mathbf{B})=(\operatorname{tr} \mathbf{A})(\operatorname{tr} \mathbf{B})$ for any elements $\quad \mathbf{A}$ and \mathbf{B} of \amalg_{p} End $\wedge^{p} V$.

Proof. Additivity of the trace is trivial. To show that the trace also respects the third product suppose that V is traceable of rank n, and let $(\alpha \mathbf{A})_{p},(\alpha \mathbf{B})_{p}$ and $\alpha(\mathbf{A} \times \mathbf{B})_{p}$ denote the components of $\alpha \mathbf{A}, \alpha \mathbf{B}$ and $\alpha(\mathbf{A} \times \mathbf{B})$ in End $\wedge^{p} V$ for each $p=0, \ldots, n$. By the definition $\mathbf{A} \times \mathbf{B}=\alpha^{-1}((\alpha \mathbf{A})(\alpha \mathbf{B}))$ of the third product one has $\alpha(\mathbf{A} \times \mathbf{B})=(\alpha \mathbf{A})(\alpha \mathbf{B})$ for the composition product $(\alpha \mathbf{A})(\alpha \mathbf{B})$, that is, $\amalg_{p} \alpha(\mathbf{A} \times \mathbf{B})_{p}=\amalg_{p}(\alpha \mathbf{A})_{p}(\alpha \mathbf{B})_{p}$. In particular $\alpha(\mathbf{A} \times \mathbf{B})_{n}=(\alpha \mathbf{A})_{n}(\alpha \mathbf{B})_{n}$ in the $n^{\text {th }}$ component End $\wedge^{n} V$, so that

$$
\operatorname{tr}(\mathbf{A} \times \mathbf{B}) I_{n}=\left((\operatorname{tr} \mathbf{A}) I_{n}\right)\left((\operatorname{tr} \mathbf{B}) I_{n}\right)=(\operatorname{tr} \mathbf{A})(\operatorname{tr} \mathbf{B}) I_{n}
$$

by definition of the trace; since End $\wedge^{n} V$ is free on the single generator I_{n} this implies $\operatorname{tr}(\mathbf{A} \times \mathbf{B})=(\operatorname{tr} \mathbf{A})(\operatorname{tr} \mathbf{B})$ as claimed.

3. Properties of the third product

We now establish several properties of the third product. Although these properties do not require the R-module V to be traceable, we shall later impose a condition on elements of the R-module Π_{r} End $\wedge^{r} V$ itself; the condition will automatically be satisfied in the applications.

Let V be any module over a commutative ring R with unit, and le: \mathbf{A} and \mathbf{B} be elements of the direct product Π_{r} End $\wedge^{r} V$ whose only
nonvanishing components occur in degrees p and q, respectively; for convenience we write A_{p} and B_{q} in place of \mathbf{A} and \mathbf{B}. Recall that the identity endomorphism of each exterior power $\wedge^{r} V$ is given by $I_{r}=\frac{1}{r!} I^{r r} \in$ End $\wedge^{r} V$ for the identity endomorphism $I=I_{1} \in$ End V, and that there is a twosided unit element $\mathbf{I}=e^{\cdot I} \in \Pi_{r}$ End $\wedge^{r} V$ with respect to composition products.
3.1 Lemma. For each $r \geqslant 0$ let $\left(A_{p} \times B_{q}\right)_{r} \in$ End $\wedge^{r} V$ be the $r^{\text {th }}$ component of $A_{p} \times B_{q}$; then

$$
\left(A_{p} \times B_{q}\right)_{r}=\sum_{s}(-1)^{s}\left(A_{p} \cdot I_{r-s-p}\right)\left(B_{q} \cdot I_{r-s-q}\right) \cdot I_{s},
$$

where $I_{t}=0$ for $t<0$.
Proof. This is an immediate consequence of the definition
$\mathbf{A} \times \mathbf{B}=\alpha^{-1}((\alpha \mathbf{A})(\alpha \mathbf{B})), \quad$ where $\quad \alpha \mathbf{A}=e^{\cdot I} \cdot \mathbf{A}, \alpha \mathbf{B}=e^{\cdot I} \cdot \mathbf{B}$,
and $\alpha^{-1} \mathbf{C}=e^{\cdot(-I)} \cdot \mathbf{C}$.
3.2 Lemma. $\left(A_{p} \times B_{q}\right)_{r}=0$ for $r<\max (p, q)$, and if $p=q=r$ then $\left(A_{r} \times B_{r}\right)_{r}$ is the composition $A_{r} B_{r} \in$ End $\wedge^{r} V$.

Proof. Immediate consequence of Lemma 3.1.
One can probably also use Lemma 3.1 directly to obtain the following more interesting properties of the third product: $\left(A_{p} \times B_{q}\right)_{r}=0$ for $r>$ $p+q$, and $\left(A_{p} \times B_{q}\right)_{p+q}$ is the shuffle product $A_{p} \cdot B_{q} \in$ End $\wedge^{p+q} V$. However, in order to avoid cumbersome computations we prove these results only for somewhat restricted endomorphisms $A_{p} \in$ End $\wedge^{p} V$ and $B_{q} \in$ End $\wedge^{q} V$.
3.3 Definition: An element $\mathbf{A} \in \Pi_{r}$ End $\wedge^{r} V$ is one-generated whenever each component is an R-linear combination of shuffle products of endomorphisms of V itself.

Clearly sums and all products of one-generated elements are one-generated; thus the one-generated elements form a subalgebra of Π_{r} End $\wedge^{r} V$, with respect to any of the three products.
3.4 Lemma. For any one-generated elements \mathbf{B} and \mathbf{C} of Π_{r} End $\wedge^{r} V$ and any $A \in \operatorname{End} V$ one has $(\alpha A)(\mathbf{B} \cdot \mathbf{C})=(\alpha A) \mathbf{B} \cdot \mathbf{C}+\mathbf{B} \cdot(\alpha A) \mathbf{C}$.

Proof. One may as well choose \mathbf{B} and \mathbf{C} to be shuffle products $B_{1} \cdot \ldots \cdot B_{p} \in \operatorname{End} \wedge^{p} V \quad$ and $\quad C_{1} \cdot \ldots \cdot C_{q} \in$ End $\wedge^{q} V$
of endomorphisms $B_{1}, \ldots, B_{p}, C_{1}, \ldots, C_{q}$ of V itself. Then

$$
(\alpha A) \mathbf{B}=\left(A \cdot I_{p-1}\right)\left(B_{1} \cdot \ldots \cdot B_{p}\right)=\sum_{s=1}^{p} B_{1} \cdot \ldots \cdot A B_{s} \cdot \ldots \cdot B_{p}
$$

and the result follows from the observation that $(\alpha A) \mathbf{C}$ and $(\alpha A)(\mathbf{B} \cdot \mathbf{C})$ are similar sums of shuffle products.
3.5 Lemma. For any $A \in$ End V and any one-generated $\mathbf{C} \in \Pi_{r}$ End $\wedge^{r} V$ one has $A \times \mathbf{C}=A \cdot \mathbf{C}+(\alpha A) \mathbf{C}$.

Proof. Suppose that $\mathbf{C} \in$ End $\wedge^{q} V$, and use subscripts r to identify components of End $\wedge^{r} V$. Then Lemma 3.4 yields

$$
\begin{aligned}
&(\alpha A)(\alpha \mathbf{C})_{r}=(\alpha A)\left(I_{r-q} \cdot \mathbf{C}\right)=(\alpha A) I_{r-q} \cdot \mathbf{C}+I_{r-q} \cdot(\alpha A) \mathbf{C} \\
&=\left(A \cdot I_{r-q-1}\right) \cdot \mathbf{C}+I_{r-q} \cdot(\alpha A) \mathbf{C} \\
&=I_{r-q-1} \cdot(A \cdot \mathbf{C})+I_{r-q} \cdot(\alpha A) \mathbf{C}=\alpha(A \cdot \mathbf{C})_{r}+\alpha((\alpha A) \mathbf{C})_{r},
\end{aligned}
$$

hence

$$
(\alpha A)(\alpha \mathbf{C})=\alpha(A \cdot \mathbf{C}+(\alpha A) \mathbf{C}) \in \Pi_{r} \text { End } \wedge^{r} V,
$$

hence

$$
A \times \mathbf{C}=\alpha^{-1}((\alpha A)(\alpha \mathbf{C}))=A \cdot \mathbf{C}+(\alpha A) \mathbf{C}
$$

as claimed.
3.6 Lemma. For any one-generated elements $\mathbf{A}=A_{p} \in$ End $\wedge^{p} V$ and $\mathrm{B}=B_{q} \in$ End $\wedge^{q} V$ one has $\left(A_{p} \times B_{q}\right)_{r}=0 \in$ End $\wedge^{r} V$ for $r>p+q$ and $\left(A_{p} \times B_{q}\right)_{p+q}=A_{p} \cdot B_{q} \in$ End $\wedge^{p+q} V$.

Proof. Let $J_{p+q-1} \subset \Pi_{r}$ End $\wedge^{r} V$ be the R-submodule consisting of the summands End $\wedge^{r} V$ for $r<p+q$. It suffices to show by induction on p that $A_{p} \times B_{q}-A_{p} \cdot B_{q} \in J_{p+q-1}$, the case $p=0$ being trivial. One may as well assume that $A_{p}=A_{1} \cdot A_{p-1}$ for $A_{1} \in \operatorname{End} V$ and a one-generated element $A_{p-1} \in$ End $\wedge^{p-1} V$. Then

$$
A_{p} \times B_{q}=\left(A_{1} \cdot A_{p-1}\right) \times B_{q}=\left(A_{1} \times A_{p-1}\right) \times B_{q}-\left(\alpha A_{1}\right) A_{p-1} \times B_{q}
$$

by Lemma 3.5, where $\left(\alpha A_{1}\right) A_{p-1} \times B_{q} \in J_{p+q-1}$ by a weak form of the inductive hypothesis. One also has $A_{p-1} \times B_{q} \in J_{p+q-1}$ by the same weak
form of the inductive hypothesis, so that $\left(\alpha A_{1}\right)\left(A_{p-1} \times B_{q}\right) \in J_{p+q-1}$; hence a second application of Lemma 3.5 gives

$$
\begin{gathered}
A_{p} \times B_{q}=\left(A_{1} \times A_{p-1}\right) \times B_{q} \bmod J_{p+q-1}=A_{1} \times\left(A_{p-1} \times B_{q}\right) \bmod J_{p+q-1} \\
= \\
=A_{1} \cdot\left(A_{p-1} \times B_{q}\right) \bmod J_{p+q-1} .
\end{gathered}
$$

Finally, the specific form $A_{p-1} \times B_{q}-A_{p-1} \cdot B_{q} \in J_{p+q-2}\left(\subset J_{p+q-1}\right)$ of the inductive hypothesis permits one to conclude that

$$
\begin{gathered}
A_{p} \times B_{q}=A_{1} \cdot\left(A_{p-1} \cdot B_{q}\right) \bmod J_{p+q-1}=\left(A_{1} \cdot A_{p-1}\right) \cdot B_{q} \bmod J_{p+q-1} \\
=A_{p} \cdot B_{q} \bmod J_{p+q-1}
\end{gathered}
$$

which completes the inductive step.
3.7 Proposition. For any module V over a commutative ring R with unit, the third product in Π_{r} End $\wedge^{r} V$ restricts to a product in the submodule of one-generated elements of the direct sum L_{r} End $\wedge^{r} V$.

Proof. Immediate consequence of Lemma 3.6.
Lemma 3.6 and Proposition 3.7 are certainly valid under considerably weaker hypotheses; for example, one can easily combine the present versions with localization techniques to obtain greater generality. One can possibly establish entirely unrestricted versions of Lemma 3.6 and Proposition 3.7 by applying the identity of Lemma 3.1 directly to elements

$$
x_{1} \wedge \ldots \wedge x_{r} \in \wedge^{r} V \quad \text { for } \quad r \geqslant p+q ;
$$

however, such a computation would probably be very complicated.
Here is a simple application of the results of this section. Any endomorphisms $A \in$ End V and $B \in$ End V are trivially one-generated, so that Lemmas 3.2 and 3.6 imply $A \times B=A B+A \cdot B$ and $B \times A=B A+B \cdot A$; since $A \cdot B=B \cdot A$ it follows that $A B-B A=A \times B-B \times A$. If V is traceable Theorem 2.3 then implies the best-known elementary property of the trace:

$$
\operatorname{tr} A B-\operatorname{tr} B A=(\operatorname{tr} A)(\operatorname{tr} B)-(\operatorname{tr} B)(\operatorname{tr} A)=0
$$

4. Newton identities

Let A be any endomorphism of a module V over a commutative ring R with unit. The shuffle products of the compositions I, A, A^{2}, \ldots of A
generate a subalgebra R_{A} of one-generated elements of Π_{r} End $\wedge^{r} V$, and since the third product is defined in terms of shuffle products and composition products one expects various identities relating the three products in R_{A}. If V happens to be traceable one can then apply the trace and use Theorem 2.3 to obtain relations among the various trace-induced invariants of A, as indicated in the Introduction. In this section we develop those identities in R_{A} whose images under the trace are the Newton identities, relating the sums-of-powers invariants of A to the elementary invariants of A.

For convenience we henceforth impose an additional condition on the ground ring R itself: R will be a commutative algebra with unit over the field of rational numbers.
4.1 Lemma. For any $p \geqslant 0$ and any $q>0$ the p-fold composition $A^{p} \in$ End V and the q-fold shuffle product $\frac{1}{q!} A^{\cdot q} \in$ End $\wedge^{q} V$ satisfy

$$
\left(\alpha A^{p}\right)\left(\frac{1}{q!} A^{\cdot q}\right)=A^{p+1} \cdot \frac{1}{(q-1)!} A^{\cdot(q-1)} .
$$

Proof. As in the proof of Lemma 3.4 one has

$$
\begin{gathered}
\left(\alpha A^{p}\right)\left(A^{\cdot q}\right)=\left(A^{p} \cdot I_{q-1}\right)(A \cdot \ldots \cdot A)=\sum_{s=1}^{q} A \cdot \ldots \cdot A^{p} A \cdot \ldots \cdot A \\
=q A^{p+1} \cdot A^{\cdot(q-1)},
\end{gathered}
$$

the $s^{\text {th }}$ summand containing $A^{p} A\left(=A^{p+1}\right)$ as its $s^{\text {th }}$ factor, $s=1, \ldots, q$.
4.2 Lemma. Let I_{1} be the identity endomorphism in End V; then for any $r>0$ and any $C_{r} \in$ End $\wedge^{r} V$ one has

$$
I_{1} \times C_{r}=I_{1} \cdot C_{r}+r C_{r} \in \text { End } \wedge^{r+1} V \oplus \text { End } \wedge^{r} V
$$

Proof. By Lemma 3.5 one has $I_{1} \times C_{r}=I_{1} \cdot C_{r}+\left(\alpha I_{1}\right) C_{r}$, where the degree r component of αI_{1} is given by $I_{r-1} \cdot I_{1}=r I_{r} \in$ End $\wedge^{r} V$.
4.3 Theorem. Let R be a commutative algebra with unit over the rational numbers, let V be any R-module, and let $A \in E n d V$. Then the p-fold compositions $A^{p} \in$ End V and the q-fold shuffle products

$$
\frac{1}{q!} A^{\bullet q} \in \operatorname{End} \wedge^{q} V
$$

are related for each $r>0$ by the identity

$$
r\left(\frac{1}{r!} A^{\cdot r}\right)+\sum_{p=1}^{r}(-1)^{p} A^{p} \times \frac{1}{q!} A^{\cdot q}=0
$$

where $q=r-p$.
Proof. One applies Lemmas 3.5 and 4.1 to find

$$
\begin{aligned}
A^{p} & \times \frac{1}{q!} A^{\cdot q}=A^{p} \cdot \frac{1}{q!} A^{\cdot q}+\left(\alpha A^{p}\right)\left(\frac{1}{q!} A^{\cdot q}\right) \\
& =A^{p} \cdot \frac{1}{q!} A^{\cdot q}+A^{p+1} \cdot \frac{1}{(q-1)!} A^{\cdot(q-1)}
\end{aligned}
$$

for $q>0$. Hence all summands of the alternating sum $\sum_{p+q=r}(-1)^{p} A^{p}$ $\times \frac{1}{q!} A^{\cdot q}$ cancel except in the extreme cases $p=0$ and $q=0$. For $p=0$ one uses Lemma 4.2 to find

$$
A^{0} \times \frac{1}{r!} A^{\cdot r}=A^{0} \cdot \frac{1}{r!} A^{\cdot r}+r\left(\frac{1}{r!} A^{\cdot r}\right)
$$

leaving the uncancelled term $r\left(\frac{1}{r!} A^{\cdot r}\right)$; for $q=0$ one has $A^{r} \times \frac{1}{0!} A^{\cdot 0}$ $=A^{r} \times I_{0}=A^{r}$, for the third product unit element I_{0}, so that there are no further uncancelled terms.

Theorem 4.3 provides identities in the subalgebra $R_{A} \subset \Pi_{r}$ End $\wedge^{r} V$ generated by $A \in$ End V. In the next result $R_{A}[[t]]$ will be the formal power series algebra in a single indeterminate t over R_{A}. Observe that the element $I+t A=I_{1}+t A \in R_{A}[[t]]$ has a composition-product inverse

$$
(I+t A)^{-1}=I-t A+t^{2} A^{2}-\ldots \in R_{A}[[t]],
$$

and that formal integration of $A(I+t A)^{-1}$ (from 0 to t) provides a compositionproduct logarithm

$$
\ln (I+t A)=t A-\frac{t^{2}}{2} A^{2}+\frac{t^{3}}{3} A^{3}-\ldots \in R_{A}[[t]]
$$

of $I+t A$. Similarly the shuffle-product exponentials

$$
e^{\cdot t A}=I_{0}+\frac{t}{1!} A+\frac{t^{2}}{2!} A \cdot A+\ldots \in R_{A}[[t]] \text { and } e^{\cdot(I+t A)^{-1}} \in R_{A}[[t]]
$$

$$
\left(\alpha e^{\bullet t A}\right) e^{\bullet(I+t A)^{-1}}=\left(e^{\cdot(I+t A)}\right)\left(e^{\cdot(I+t A)^{-1}}\right)=\mathbf{I}=e^{I} ;
$$

hence

$$
e^{\cdot t A} \times \alpha^{-1} e^{\cdot(I+t A)^{-1}}=\alpha^{-1}\left(\left(\alpha e^{\cdot t A}\right)\left(e^{\cdot(I+t A)^{-1}}\right)=\alpha^{-1} e^{I}=I_{0}\right.
$$

and similarly $\alpha^{-1} e^{\cdot(I+t A)^{-1}} \times e^{\cdot t A}=I_{0}$. Thus $\alpha^{-1} e^{\cdot(I+t A)^{-1}} \in R_{A}[[t]]$ is a two-sided third-product inverse $\left(e^{\bullet t A}\right)^{-1}$ of $e^{\bullet t A}$, so that formal integration of the third-product $\left(A \cdot e^{\cdot t A}\right) \times\left(e^{\bullet t A}\right)^{-1} \in R_{A}[[t]]$ (from 0 to t) provides a third-product logarithm $\ln ^{\times}\left(e^{\bullet t A}\right) \in R_{A}[[t]]$ of the shuffle-product exponential $e^{\cdot t A} \in R_{A}[[t]]$.
4.4 Theorem. Let R be a commutative algebra with unit over the rational numbers, let V be any R-module, and let $A \in E n d V$. Then the p-fold compositions $A^{p} \in$ End V and the q-fold shuffle products
$\frac{1}{q!} A^{\cdot q} \in$ End $\wedge^{q} V$ are related in the formal power series ring $R_{A}[[t]]$ by the identity

$$
\ln (I+t A)=\ln ^{\times}\left(e^{\bullet t A}\right) .
$$

Proof. For each $r>0$ one can re-write Theorem 4.3 in the form

$$
A\left(\sum_{p=0}^{r-1}(-1)^{p} A^{p}\right) \times \frac{1}{q!} A^{\cdot q}=A \cdot \frac{1}{(r-1)!} A^{\cdot(r-1)},
$$

where $p+q=r-1$. If one multiplies each such identity by t^{r-1} and computes formal sums over all values $0,1,2, \ldots$ of $r-1$, the result is a formal power series identity

$$
A(I+t A)^{-1} \times e^{\cdot t A}=A \cdot e^{\cdot t A} \in R_{A}[[t]] .
$$

Since $e^{\cdot t A}$ has a third-product inverse $\left(e^{\cdot t A}\right)^{-1} \in R_{A}[[t]]$ it follows that

$$
A(I+t A)^{-1}=\left(A \cdot e^{\cdot t A}\right) \times\left(e^{\cdot t A}\right)^{-1}
$$

that is,

$$
\frac{d}{d t} \ln (I+t A)=\frac{d}{d t} \ln ^{\times}\left(e^{\cdot t A}\right) \in R_{A}[[t]] .
$$

It remains only to integrate each power of t separately (from 0 to t) to complete the proof.
4.5 Definition. Let R be a commutative algebra with unit over the rational numbers, let V be a traceable R-module of rank n, and let $A \in \operatorname{End} V$.

Then the elementary invariants $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in R$ of A and the sums-of-powers invariants $s_{1}, s_{2}, \ldots \in R$ of A are given by $\sigma_{q}=\sigma_{q}(A)=\operatorname{tr} \frac{1}{q!} A^{\cdot q}$ and $s_{p}=s_{p}(A)=\operatorname{tr} A^{p}$, respectively. Observe that since V is traceable of rank n one automatically has $A^{\cdot q}=0$ hence $\sigma_{q}=0$ whenever $q>n$; consequently the preceding hypotheses imply that

$$
\operatorname{tr} e^{\cdot t A}=1+t \sigma_{1}+\ldots+t^{n} \sigma_{n} \in R[[t]] .
$$

4.6 Corollary (The Newton identities, more or less). Let A be any endomorphism of a traceable module V of rank $n>0$ over a commutative algebra R with unit over the rational numbers. Then for each $r>0$ the invariants $\quad \sigma_{q}=\sigma_{q}(A) \in R \quad$ and $\quad s_{q}=s_{q}(A) \in R \quad$ satisfy the identity

$$
r \sigma_{r}+\sum_{p=1}^{r}(-1)^{p} s_{p} \sigma_{r-p}=0
$$

where $\sigma_{q}=0$ for $q>n$.
Proof. By Theorem 2.3 the trace induces an algebra homomorphism $R_{A} \rightarrow R$ from the subalgebra R_{A} of the third-product algebra Π_{s} End $\wedge^{s} V$ to the ground ring R; hence it suffices to apply the trace to the identities of Theorem 4.3.
4.7 Corollary. Let A be any endomorphism of a traceable module V of rank $n>0$ over a commutative algebra R with unit over the rational numbers. Then the elementary invariants $\sigma_{1}, \ldots, \sigma_{n}$ and sums-of-powers invariants s_{1}, s_{2}, \ldots of A satisfy the identity

$$
t s_{1}-\frac{t^{2}}{2} s_{2}+\frac{t^{3}}{3} s_{3}-\ldots=\ln \left(1+t \sigma_{1}+\ldots+t^{n} \sigma_{n}\right)
$$

in the formal power series ring $R[[t]]$.
Proof. As in the preceding proof Theorem 2.3 implies that the trace induces an algebra homomorphism $R_{A}[[t]] \rightarrow R[[t]]$, products in $R_{A}[[t]]$ being defined in terms of third-products; hence it suffices to apply the trace to the identity of Theorem 4.4.

A special case of the third product and Theorem 2.3 appear briefly at the end of [2], somewhat fettered by the details of a specific application. The present article shows that the third product is a reasonable general feature of elementary linear algebra over any commutative ring with unit: it turns the trace into an algebra homomorphism, and it provides a natural setting for the study of invariants of module endomorphisms.

REFERENCES

[1] Flanders, H. On free exterior powers. Trans. Amer. Math. Soc. 145 (1969), 357-367. [MR 40 \# 2662.]
[2] Osborn, H. The Chern-Weil construction. Differential Geometry, Proc. Symp. Pure Math. 27, Part 1 (1973), pp. 383-395. American Mathematical Society, Providence, Rhode Island, 1975. [MR 52 \# 6741.]
(Reçu le 28 mai 1984)

Howard Osborn
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

[^0]: MR subject classification (1980): 16A65 Endomorphism rings.

