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ORTHOMODULAR QUADRATIC SPACES 209

XII. The Closed Graph Theorem

Let (£, g be definite spaces in the sense of Definition 15 over a field k

whose valuation topology satisfies the 1. axiom of countability. For

f : (E g a linear map set ©(/): {(*, p) e © © 3 I h ZOO}- Then [21]
the "closed graph theorem" can be proved by classical methods (Baire

category arguments) :

(24) ©(/) is closed => / is continuous

There is the following algebraic analogue of statement (24) :

(25) ©(/) ©(Z)11 => / is 1-continuous

i
Here ©(Z)11 is taken in © © 5 and, by definition, f is 1-continuous

iff f is continuous with respect to the topologies on (£ and 5 whose

O-neighbourhood filters are generated by the orthogonals of all finite dimensional

subspaces of (£ and g respectively. For (£ an orthomodular space

implication (25) holds : ©(/) ©(Z)11 implies that ®(Z) is closed since the

l
form is continuous on (£©$; so f is continuous by (24). Further, if

© c is the orthogonal of a finite dimensional subspace then Z_1(©)
is closed, hence Z_1(©) (Z-^©))11 as © is orthomodular. But (Z~1(®))1
is finite dimensional, hence f is 1-continuous.

In [31] nice examples of f : (5 g are given which illustrate that (25)
is in general violated.

XIII. A FEW OPEN PROBLEMS

All orthomodular spaces are meant to be infinite dimensional and
different from the classical ones over R, C, H.

Problem 1. Are cardinalities of maximal orthogonal families in an
orthomodular space always equal? The answer is "yes" for those in S.

Problem 2. Give an example of an orthomodular space that contains
an uncountable orthogonal family of non-zero vectors.

Problem 3. Does the implication

Sil + © (© + ©)11 => 9I1 + SB1 (91h©)1
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hold for all pairs of _L-closed subspaces $1 2111, S 5311 in an ortho-
modular space? The answer is "yes" for orthomodular spaces in S. Cf.

Remark 3 in [31]. More generally, are there other elementary lattice theoretic

statements (in the sense of first order logic) that are valid in all L±1(E)
where (£ is orthomodular?

Problem 4. Are there spaces (£ in Q), ê with Ls((£) L1±(f£) a Lc((£)?

t
Problem 5. An orthomodular space (£ in ê is never isometric to any

of its proper subspaces 36, although it does happen that (£ is similar to a

proper subspace 36. However, Keller's space is not similar to any of its

proper subspaces. Give an intrinsic description of the phenomenon. (See [21].)

Problem 6. Answer Keller's question in § 3 of the introduction : When is

{A}' commutative for selfadjoint A in the algebra ^(§) of bounded

operators § -> §

Problem 7. Let (£ be an orthomodular space in Q) or S such that

the types of the members of a maximal orthogonal family are all different.

Let A be the (countable) set of these types. For each choice of a family (XI-)I-eA

of nonnegative real numbers with Z =* 1 there is a probability distribution
A

/: L11(G) - [0, 1] c= R uniquely defined as follows: for XeL1±((£) set

f (36) ; Yj where the subset J ç A consists of the types of the members
ieJ

of any orthogonal basis of 36. We have /((£) 1, /(0) 0, f(£Xd Z/W
for any countable family 360 36!,... of mutually orthogonal (.1-closed)

subspaces. These are by no means all probability distributions on (£. There

is a host of other possibilities. Can one bring some order into this

multitude

Problem 8. Classify the definite spaces with admissible topology over

fixed base field.

Problem 9. Study the orthogonal group of definite orthomodular spaces.
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