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Corollary 38. Assume that the definite space ((£; < » is complete

and that the system of types Corollary 26) is linearly independent in

Y/IT (considered as a Z2-vector space) then the conclusions (i), (ii), (Hi)

of Theorem 37 hold.

C((£) in Theorem 37 is not complete (unless finite dimensional). Its

quadratic form < > can be extended to the completion C. By using

Theorem 28 one can see that this completion has L± ±(C) Lc(C) if and only

if E has Lx ±(E) LC(E).

XI. Continuous operators are not always bounded

XI. 1. Introduction. Let (£ be an infinite dimensional definite space
in the sense of Definition 15. A linear map (operator) h: (£ -+ (5 is called
bounded iff there exists y e T such that for all s e ffi we have cp</zx)

£ y + cp<*>.

In [6] A. Fässler gave an explicit example of a continuous operator
h on an orthomodular space (£ that is not bounded; she also proved a

criterion for boundness which is very useful in the study of the algebra
J((E) of bounded operators h : (£ (£ when (£ is an orthomodular definite
space of a certain kind. We shall prove this criterion anew here as its
original proof can be shortened considerably.

We shall consider definite spaces that satisfy

(19) ((£;< » contains a maximal orthogonal family (ef)N such that the

groups 0(cp<cf>) are different.

By (14) we see that (19) is a property of (£, not of (cf)N; Keller's
original example of an orthomodular space satisfies (19).

XI.2. Fassler's Criterion. In this subsection let (©;<,» be an
infinite dimensional orthomodular space that has (19). Fix a maximal
orthogonal family (ef)N that enjoys (19). If /:(£:—(£ is given, expand
(Lemma 27)

(2°) fti L a,'/; (i'gN)
jeN

Theorem 39 ([6]). The linear map f is bounded iff it is continuous
Ma satisfies



208 H. GROSS AND U.-M. KÜNZI

(21) {(pa;; I T (p</ef) T (p<e£>} is bounded below.

The heart of the proof of Theorem 39 is the following consequence of

assumption (19).

Lemma 40 [6]. If f is continuous then (19) implies that the set

I : {; e N I cp</e;> < <p<e(> & cp</e;> (p<ef> (mod 2r)} is finite.

Proof We renumber the such that 0((p<ef)) c= 0((p<ei+1>). If we
t

replace ef by a multiple then its group does not change; therefore we may
assume without loss of generality that for all r, s g N we have

(22) r < s => (p<er> g 0((p<es» (p<er> ^ 0

From (22) we obtain that for all r, s e N

(23) r < s => V8 g T : cp<er) < | (p<es) + 25 |

If i g / then cp</cf) cp<e,-> for some j # i. Let I0 c= I be the subset

of those i for which the j is smaller than i. Thus, if i e I\I0 then

(P</ei) (p<e/> + 2cpaij < cp<ef); so by (23) we must actually have

(P</ei) ^ — ^ 0- Since (ef) is a null sequence we see that I\I0 has

to be finite (because {/e{-1 i g I\I0} must also be a null sequence if I\I0
is infinite). Thus, in order to prove Lemma 40 we have to show that J0

is finite.
The idea in [6] ist to show that for each i e I0 there is Xt g k such

that cp</Pwei)> ^ 0 and (p<2ct-el) ^ 0 so that by the same token I0 must

be finite. This is accomplished by choosing, in turn, X 1, X </et)_1,
according as to whether cp</ef> is ^ 0, > 0 respectively.

Proof of Theorem 39. Assume that / is bounded. Continuity is obvious.

Let y g r be a bound for / and let y0 min (0, y}. Now cp</ef> q)<oc££e£)

for all i ocurring in (21), i.e., for all i e N\I (by assumption (19) we have

Tcp<ef) ^ T(p<e7) for all i ^ j). Thus, if cpafi > 0 then trivially cpaif ^ y0;

if cpafi < 0 then cp(afi) > 2cpafi > y > y0-
Assume conversely that / is continuous and has (21). We show that

there is y0er with (p</ef> ^ y0 + (ieN). Let y be a lower bound

for the set in (21) and set y0: min {0, 2y, yx,..., y„} where yv: <p</0
— cp<ev>, v g /. To finish the proof we conclude cp</*> > cp<ac) + y0 (Vx)

by continuity of /:
00

<P</£ &i> <P</fêioeio»
>

Vo

<P<£,ioe£o> To + <P<*> •
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