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X. CLIFFORD ALGEBRAS OF ORTHOMODULAR SPACES

X.1. AssuMpTIONS. In Chap. X k is a commutative field of characteristic
not 2 and ¢ , ) is a symmetric bilinear anisotropic form € x € — k on the
k-vector space €.

C(€) is the Clifford algebra of (€;  , >);itis a k-algebra that contains
the space € as a set of ring generators which satisfy x-n + p-x = 2{x, ).
For any pair of elements ¢, d € C(€) there exists a finite orthogonal family
¢, s &, in € such that ¢ = Y oye;,d = ) PBe;; here the summation index [

I

runs over all subsets

= {1, <..<y} of {0,1,.,n} and ¢ = ¢ + ... - ¢, ; the empty
product e is the unit element in C(€).
There is a canonical symmetric bilinear form ¢ , > on C(€) which extends

the given form on € ([5, 11, 227). One has

(16) ,d) = ; o B, H Ceys e

1el

1'612

From now on we shall assume that (€; < , >) is an infinite dimensional
definite space.

X.2. CLIFFORD ALGEBRAS OF DEFINITE SPACES. In [6] Angela Fassler has
proved that for certain definite orthomodular spaces € the algebra C(€) 1s
a skew field ; furthermore, the k-vector space C(€) equipped with the form (16)
is a definite space whose completion C(€) is orthomodular again. Furthermore
C~((E) 1s a skew field, in fact, a *-valued field with * the extension to
C(€) of the main antiautomorphism of the Clifford algebra C(€); the residue
class field of C(€) is isomorphic to the residue class field of .

In the following theorem we prove the main fact in a simplified and slightly
more general setting.

THEOREM 37. Assume that in the definite space (€; < , >) each ortho-
gonal family e, .. e, has

(17) o<lepy + .. + ¢<e,> ¢2I
Then :

() C(€) equipped with the form in (16) is a definite space,
() C(€) is a division ring,
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(iii) Themap ¢:C(€) > T U {0} defined by ¢ — @{c) isa *-valuation
for * the main antiautomorphism of C(C).

Proof. (1) It suffices to prove the triangle inequality (Lemma 14 (i)).
Write ¢ = ) aye;, D = > Be; as in X.1. Then we have @dloe;> # @(Be,)
for I # J and a # 0 # B. Hence

o) = (PZ<°‘IQI> = mIin {o<ae)}
and similarly for @<{d). Therefore
e{c+Dd) = (PZ {(o;+Bp)e;y = min {2(9(0‘1‘*‘[31) + (P<el>}

> min {200; + @<¢;, 20B; + @<e;p} = min {@{c), <D} .

This proves (i). Next we show
(18) ey = o) + <)
Indeed, from
Ceprey = (ELenpequmunny = Cernm*Ceaomuanny = e« ey
we see that
oy ep) < PLayer) & OBy ey < 9LByes)
implies
oo, By, e, e < oy Brese;) . !
We therefore pick G, H < {0, ..., n} such that for all I <= {0, ..., n} we shall have

plages) < OLaser, O Puey) < O(Prep .

It now follows that

e D) = (P<(Za1e1)'ZBJQJ> = (P<ZOCIBJQIQJ> = @<{usBuecen
+ Z,“IBJQI"—J> = @<agPuecen) = 9Ly + @<D).

Thus (18) is established.

From (18) it follows that C(€) has no zero divisors, hence C(€) is a
division ring (being an inductive limit of finite dimensional algebras). The map
:C(€) > ' U {00} as defined in (iii) of the Theorem is a *-valuation, 1
for ®(c*) = @(c) is obvious and everything else has been established already.ﬂ
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COROLLARY 38. Assume that the definite space (€; , )) is complete
and that the system of types (Corollary 26) is linearly independent in
[/2 (considered as a Z,-vector space) then the conclusions (i), (ii), (iii)
of Theorem 37 hold.

C(€) in Theorem 37 is not complete (unless finite dimensional). Its
quadratic form ¢, > can be extended to the completion C. By using

Theorem 28 one can see that this completion has L, ,(C) = L(C) if and only
if E has L, ,(E) = LJ(E).

XI. CONTINUOUS OPERATORS ARE NOT ALWAYS BOUNDED

XI.1. INTRODUCTION. Let € be an infinite dimensional definite space
in the sense of Definition 15. A linear map (operator) h: € — € 1s called
bounded iff there exists ye I such that for all xe & we have o@{hx)
27+ 0x).

In [6] A. Fissler gave an explicit example of a continuous operator
h on an orthomodular space € that is not bounded; she also proved a
criterion for boundness which is very useful in the study of the algebra
A(€) of bounded operators h: € - € when € is an orthomodular definite
space of a certain kind. We shall prove this criterion anew here as its
original proof can be shortened considerably.

We shall consider definite spaces that satisfy

(19) (€; {, ») contains a maximal orthogonal family (e,)y such that the
groups O(¢(e;») are different.

By (14) we see that (19) is a property of € not of (e)y; Keller’s
original example of an orthomodular space satisfies (19).

X12. FAssLErR’S CRITERION. In this subsection let (€;< , }) be an
infinite dimensional orthomodular space that has (19). Fix a maximal

orthogonal family (e)y that enjoys (19). If f: G — G is given, expand
(Lemma 27)

(20) fei= 3 oye;  (ieN)

JjeN

THEOREM 39 ([6]). The linear map f is bounded iff it is continuous
L (nd satisfies
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