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METHODE DU CERCLE ADELIQUE
ET
PRINCIPE DE HASSE FIN

POUR CERTAINS SYSTEMES DE FORMES

par Renaud DANSET

INTRODUCTION

A) PRESENTATION GENERALE

Soit, pour tout ce travail, f = (fy,.., f,) un ensemble de r formes,
de degré d > 2, en n variables x = (xy,.., X,) et a coefficients entiers.
On prendra toujours r < n. (N.B.: « forme » signifie « polyndme homogene »).

Une conjecture attribuée a Artin dit que, si d est impair et n > rd?,
le systéme diophantien f = 0 admet des solutions entiéres non triviales (on
dit que f représente zéro). Cette conjecture tente de préciser I'ideée selon
laquelle si d est impair, ou pair mais avec des conditions nécessaires €vi-
dentes et s’il y a suffisamment de variables, alors le systéme f représente
Z€r0.

Birch (1957, Homogeneous forms of odd degree in a large number of
variables, Mathematika 4, 102-105) montre, pour r = 1, qu’il existe une fonc-
tion d — N(d) telle que toute forme de degré impair d, en n variables avec
n > N(d) représente zéro; mais sa methode conduit a des valeurs N(d)
astronomiques.

En fait cette conjecture est tellement inaccessible que, dans le cas le plus
simple, d = 3 et r = 1, Davenport (cf. bibliographie) a démontré, a la suite
d’un énorme et remarquable travail, que toute forme cubique a coefficients
entiers ayant au moins 16 variables, représente zéro. Non seulement 16 n’est
pas 10, mais rien d’aussi precis-n’est connu pour les autres couples (d, r).

Une forme plus faible de la conjecture d’Artin est la suivante: pour tout
d>2,si n> rd? le systtme f = 0 admet des solutions non triviales dans
Qp (on dit que f représente zéro dans Qp) pour tout entier premier p.
Le cas d = 2, r = 1 constitue le Théoréme de Hasse (cf. par exemple
Borevitch-Chafarevitch, chapitre I, théoréme 5). Le cas d = 3, r = 1 a été
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démontré simultanément mais de maniéres différentes par Demyanov (1950,
On cubic forms in discretely normed fields, Dokl. Akad. Nauk. SSSR
(N.S.) 74, 889-891) par Lewis (Cubic homogeneous polynomials over p-adic
number-fields, Annals Math. 56, 1952, 473-478) et Davenport (Cubic forms in
32 variables, cf. bibliographie). Le cas d = 2, r = 2 a été démontré par
Demyanov, une démonstration simplifiée se trouvant dans Birch, Lewis,
Murphy, Simultaneous quadratic forms, Amer. J. Math. 84, n° 1, 1962,
110-115.

Cette seconde conjecture n’a, elle aussi, €té démontrée pour aucun autre
couple (d, r). Cependant Brauer (1945, A note on systems of homogeneous
algebraic equations, Bull. Amer. Math. Soc. 51, 749-755) a montré, pour
r = 1, qu’il existe une fonction d — M(d) telle que toute forme de degré d
ayant au moins M(d) variables représente zéro dans Q, pour tout p. Dans
son travail cité ci-dessus, Birch a utilisé ce résultat de Brauer, malheureusement
la méthode, on I'a déja dit, ne donne pas des valeurs M(d) raisonnables.

On peut citer aussi Ax et Kochen (1965, Diophantine problems over local
fields, I, II, Amer. J. Math. 87, 605-645) qui ont prouvé que pour un degré d
donné, la seconde conjecture est vraie pour toutes les valeurs de p sauf
peut-€tre pour un nombre fini, dépendant de d et dans le cas r = 1.
Lang a aussi demontré que si la conjecture était vraie pour r = 1, elle était
egalement vraie pour tout r > 1. (On quasi algebraic closure, Ann. Math. 55,
n® 2, 1952, 373-390). Enfin Terjanian (C.R. Acad. Sci., 262, 1966, A612) a
construit un polynome homogene de degré 4 a 18 variables qui ne représente
pas 0 dans Q, ce qui constitue un contre-exemple a la conjecture, mais
d’'un type particulier..! Notons pour terminer qu’il est facile de montrer
que la valeur hypothétique r d*> est une borne inférieure (cf Borevitch-
Shafarevitch, Ch. I, § 6-5).

Le lien entre les deux conjectures précédemment citées est ce qu'on
appelle le Principe de Hasse; si le systétme f = O représente zéro dans R
et dans tous les Qp alors il représente zéro dans Q. Le cas d = 2, r = 1
constitue le Théoréme de Minkowsky-Hasse (cf. Borevitch-Shafarevitch,
ch. I, §7), associé au théoreme de Hasse mentionné ci-dessus, il devient le
théoreme de Meyer: toute forme quadratique a coefficients entiers, indéfinie et
ayant au moins cing variables, représente zéro. Malheureusement Selmer (The
diophantine equation ax® + by* + cz® = 0, Acta Math. 85, n° 3-4, 1951,
203-362) a montré en particulier que la forme cubique 3x® + 4y° + 573
représente zéro dans R et dans tous les Qp mais pas dans Q. Enfin il existe
beaucoup d’autres contre-exemples qui infirment le Principe de Hasse lorsque
d = 3.
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Que peut-on faire avec deux conjectures inaccessibles et un Principe
faux ?... Restreindre considérablement ses ambitions!

Il existe plusieurs fagons d’affaiblir le Principe de Hasse (cf. M. de
La Palice); celle qui est utilisée dans ce travail se definit comme suit et
s’appelle

PrRINCIPE DE HASSE FIN: Si le systéme diophantien f = 0 posséde une
solution non singuliére (N.B.: cette derniére est forcément non triviale!)
dans R et dans tous les Qp, alors le systeme f représente zéro dans Q.

Cette nouvelle version ne résiste pas mieux au contre-exemple de Selmer
mais l'expérience a montré sa validité pour des classes suffisamment impor-
tantes de systémes [ et en particulier pour ceux considérés dans ce travail

Pour obtenir ses résultats sur les formes cubiques, évoqués ci-dessus
(cf. également le paragraphe 5D du présent travail) Davenport utilise la
méthode dite « du cercle » de Hardy et Littlewood. Birch (Forms in many
variables, 1962, cf. bibliographie et § SB du présent travail) s’inspire des
resultats de Davenport en les généralisant considérablement. Enfin,
W. M. Schmidt, vers 1980, reprend la méthode du cercle comme l'avait fait
Birch mais pourlecas d = 2, r > 1.

Puisque la méthode du cercle étudie un certain type de sommes trigo-
nometriques associees au systeme f, il a paru intéressant d’exprimer la propriété
précise de ces sommes qui permet le succes du principe de Hasse fin pour les
systémes f concernés.

Cette propriété (constituée par les hypotheses (H1) et (H2) ci-dessous
formulées) n’est pas de tout repos. Trouver une qualité du systéme f qui
entraine cette propriété des sommes trigonométriques associées et donc
I'application du Principe de Hasse fin, est un probléme difficile que chaque
auteur traite a sa fagon, qui ne constitue pas lobjet du présent travail
mais qui est résumé au paragraphe 5. Notons dailleurs que les dites
«qualités », méme si leurs auteurs parviennent & leur donner une expression
concise, sont difficilement compréhensibles d’un titulaire du baccalauréat et
que leur vérification dans des cas généraux, c'est-a-dire exception faite des
exercices « faits pour », n’est pas évidente.

Puisque la méthode du cercle établit une formule asymptotique, réduite
en fait a sa partie principale dont le coefficient est le produit de facteurs
représentant toutes les places de Q, il a paru intéressant de donner un exposé
adélique de cette méthode, suivant ainsi une tendance générale de ces derniéres
années et plus particuliérement Lachaud (1982 « une présentation adélique
de la série singuliére et du probléme de Waring » cf. bibliographie).
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On obtient ainsi:
1°) Une présentation unifiée des arcs majeurs.

2°) Une expression globale pour la série singuliere et l'intégrale singu-
liere qui met en évidence la transformée de Gauss globale F* (selon la
notation d’Igusa, cf. bibliographie) associ¢e a une fonction de Schwarz-
Bruhat d’un type précis.

Remarque. Un résultat analogue pour d’autres fonctions de Schwarz-
Bruhat est une des espérances que ce travail peut susciter.

3°) L’exposé¢ d’'une méthode suffisamment générale comme le montrent
les exemples du paragraphe 5 et dont les hypothéses initiales sont nettement
dégageées.

4°) La démonstration au lemme 1-6 d’'une majoration geénérale d’une
somme de modules d’intégrales oscillantes.

B) NOTATIONS ET HYPOTHESES PRINCIPALES

Soient f = (f;,.., f,) r formes de degré d > 2, en n variables
x = (x{, .., X,) avec r < n et a coefficients entiers.

Soit g un polyndme quelconque de degré < d et a coefficients entiers,
en les variables x.

Remarque. Tout ce travail pourrait se faire sans mentionner un tel
polyndme g, sur ce point on pourra lire la remarque finale du paragraphe 1
et le paragraphe 5A.

Soit 4 une boite de dimension n (parallélépipédé de cotés paralléles
aux axes de R" ou encore: {x e R"|1 < i < n,q; < x < b;}) et de cotés au
plus égaux a 1 (le.:1 <i<nb, —a <1 }

Soit P € R, et destiné a étre tres grand.

Soit € > 0 et destiné a €tre tres petit.

Soit ve Z".

Soit a« = (g, ...,o,)€(R/Z) ouencore: 1 <i<r0<auo <L

Soit la somme trigonométrique

Sy = Y exp [m( 5 oc,-f,-(x)+g(x)ﬂ

XePBNL" Jj=1

On définit les hypotheses suivantes concernant les sommes trigono-
métriques S(o) et donc le systeme f:
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(H1) Il existe une constante Q > 0 telle que pour tout A > 0, pour tout
polyndéme g de degré < d, pour toute boite # incluse dans un domaine
borné de R”, pour tout P > 0, pour tout & > 0, pour tout x e (R/Z),
on ait l'alternative suivante:

ou bien 1) | S(o) | « ProAaets

J]a constante impliquée dans le symbole « « » dépendant seulement des
coefficients des formes f;, du domaine borné dans lequel la boite # est
choisie, de ¢ > 0 et, a cause de cette constante, I'inegalité étant triviale
pour P petit;

_ a a a,
ou bien ii) 1l existe des approximations rationnelles 5 = (—ql—, - ;) de

o = (o, ..., &) telles que
pgcd(a,, .., a,,q) = 1 (on ne considére que les a;#0),
1 <q< P,
0<aq <aqg,

(I<i<n|qo —a| < P77,

(H2) Q étant la constante définie dans 'hypothese (H1), on a
Q>r+1.

Remarques.

a) Comme annoncé précédemment, '’hypothese (H1) peut faire frémir.
En plus romance, elle énonce une propriété fréquemment rencontrée ou
désirée chez les sommes trigonomeétriques: ou bien on dispose d’une bonne
majoration du module des sommes trigonométriques étudiées (ici les sommes
S()), ou bien le coefficient principal de 'exposant (ici la variable o) posseéde
de bonnes approximations rationnelles.

b) On peut remarquer quen raison du théoréme classique d’approxi-
. mation rationnelle simultanée de r nombres réels (cf. Hardy and Wright,
4¢ edition, paragraphe 11.12) le cas ii), et donc P'hypothése (H1), sont

.o Y
triviaux pour A > ——d.
r+ 1

¢) On a preferé distinguer les hypotheéses (H1) et (H2) car elles jouent
des roles trés distincts dans les démonstrations de ce travail.

d) Pour une justification de ces hypotheses, on doit voir le paragraphe SA.
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e) L’ensemble des o e(R/Z), qui satisfont aux conditions de bonne
approximation rationnelle énoncées dans ii), constitue ce qu'on appelle clas-
siquement les arcs majeurs. L’origine de ce nom se comprend en observant
lecasr = 1.

L’ensemble complémentaire du précédent dans (R/Z)" constitue les arcs
mineurs. Dans la plupart des applications de la méthode du cercle, dont le
nom se comprend soudain mieux (prendre encore le cas r = 1 et se demander
ce quest R/Z), le traitement de ces arcs mineurs est la partie la plus
delicate car il s’agit d’obtenir, sur eux, une « bonne » majoration du module
des sommes trigonométriques étudiées.

On comprend donc que ’hypothése (H1) avec le cas i) escamote comple-
tement cette difficulté qui, bien entendu, réapparait selon un Principe de
conservation bien connu, dans le probléme, déja évoqué, consistant a trouver
une propriété du systéme f qui entraine I’hypothese (H1) (et aussi (H2)
d’ailleurs!). Pour cet aspect qui, cela a déja été dit, sort du cadre de ce
travail mais lui est immédiatement associ¢, il faut lire le paragraphe 5.

Si le lecteur a eu la patience de lire ce qui précede, il sait que le
but de ce travail est de montrer que les systémes f, dont les sommes trigo-
nométriques & () associées répondent aux hypotheses (H1) et (H2), observent
le principe de Hasse fin.

Cependant, comme la méthode du cercle se préte trés bien a I'’étude du
systéme diophantien f = v (et pas seulement f = 0) qui parait méme mieux
adapté a la nature profonde de celle 1a, il vaut mieux énoncer deux nou-
velles hypothéses pour le cas général dont la restriction au cas v = 0
rappellera irrésistiblement les conditions du Principe de Hasse fin.

(H3) Pour un ¢lément v de Z', le systtme f = v admet une solution
non singuliére dans Z7, pour tout entier premier p.

(H4) Le systéme f = 0 admet une solution non singuliere dans R”".
Remarque. Si v # 0 ’hypothese (H4) ne dit pas que la variété réelle
V) = {xeR"| f(x) = V}

admet un point réel non singulier mais qu’elle admet un point a [linfini
réel non singulier; pour une justification de cette « anomalie », voir le para-
graphe 5C.

Le lecteur sait également que la présentation adoptée dans ce travail
utilise les adéles. Il est temps d’en parler.
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C) ADELES

Pour toutes les relations, définitions et propriétés des adéles utilisées
ci-aprés, une référence est Godement (Adéles et ideles, cf. bibliographie).

Soit A 'ensemble des adeles sur Q.

Soit  le caractere de Tate.

Soit ¢ une fonction de Schwarz-Bruhat sur A”, telle que

1) @ est décomposable (i.e.: O(x) = @ (x,) [] ©,(x,))
p
2) Pour tout p premier, on a

0p = lgn
(on note 1 la fonction caractéristique d’'un ensemble E),

3) ¢, = 0 * 1p4 (produit de convolution)

avec 0 fonction de classe C* sur R", a support compact inclus dans un
voisinage de O et, en pratique, aussi petit qu’il sera nécessaire mais fixé
et donc indépendant de la variable P.

Remarque. 11 s’agit la d’une différence notable avec le travail de Birch
(« forms in many variables » cf. bibliographie) qui utilise la fonction 1pg4,
caracteristique de la boite P4, discontinue au bord de celle-ci. En définissant
¢, comme ci-dessus on obtient d’abord une fonction de Schwarz-Bruhat ce
qui permet 'usage d’une formule de Poisson au paragraphe 1. En revanche,
on complique légerement le paragraphe 3 (cf. la remarque importante qui
suit la démonstration du Lemme 3-2).

Soit £ € A", on définit la somme

H(E) = Y o(x¥(<&, f(x)>)

xeQn

avec <&, f(x)> = Z & fix).

Cette somme H(E) est absolument convergente et constante sur les classes
modulo Q', essentiellement parce que le caractére de Tate est trivial sur Q.

Ainsi, pour tout ve Z', I'application & HEW(<E —v>) définit une L
fonction sur (A/Q)" et on a I’égalité

J HEW(<E, —v>)dE = 3 (P(x)j (<, f(x)—v>)dE .
(A1Q)" (A/Q)"

xeQn
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Si f(x) # v, le caractére &+ Y(<¢&, f(x)—v>) n’est pas trivial sur le
groupe (A/Q)" et son intégrale est nulle.

Si f(x) = v, ce caractére est trivial et comme J dg = 1, puisque les
(A/Q)
mesures de Haar sur A" et (A/Q)" sont choisies pour qu’il en soit ainsi! On

obtient I'importante égalité

j HEW(<E —v>)dE = ) ¢u(x)
(A/Q)" xeZn

Sf(x)=v

(la somme Y du second membre ne porte que sur les x € Z" car ¢Q, = IZZ

pour tout p, de plus cette somme représente a peu prés le nombre de solu-
tions entieres du systeme f = v, présentes dans la boite P# < R").

On cherche principalement, dans le présent travail, & comparer la somme
H(&) avec l'intégrale de méme forme, appelée transformée de Gauss globale
(en fait associée au systeéme f, au caractére \y et a la fonction @)

F*E) = j PN( <&, f(x)>)dx .
Arl
On veut obtenir la formule asymptotique suivante: il existe & > 0, tel que

j HEW(<E, —v>)dE = J F*EN(<E, —v>)dE + O(P" ")
(A/Q) r

A
Remarque. L’intégrale portant sur F* est la seule raisonnable car cette
fonction n’est pas en général constante sur les classes modulo Q. De plus

cette intégrale n’est autre, selon les notations d’Igusa (cf. bibliographie) que

1/7}(~—v) = F(v) appelée série singuliere globale (cf. le paragraphe 5F). Le

chapeau /" désigne la transformée de Fourier associée au caractére de Tate
(cf. Godement...).

D) METHODE DU CERCLE ADELIQUE
Soit £ € A”; on utilisera désormais les notations suivantes

€0 | = Max |§ | et pourtoutp, |G|, = Max|§g ,|,;

1<is<r 1<isr

on deéfinit aussi la fonction

Q) = [[Max(L, ], 1))
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qui jouera un rdle important et dont on peut remarquer qu’elle ne dépend
que des places finies p de £ mais pas de &, .

Enfin on définit, pour chaque A > 0, un arc majeur (noter I'emploi du
singulier)

M) = {E€AT/|E, | < P74 et Q) < P}

Remarque.

a) Pour A suffisamment petit (ceci sera précise en temps voulu) 'appli-
cation canonique A" — (A/Q)", que nous désignerons désormais par la lettre =,
est injective sur M(A). Dans ces conditions, on notera de la méme fagon
M(A) et m(M(A)) en remarquant que les mesures de Haar sur A" et sur
(A/Q)" attribuent respectivement la méme valeur aux ensembles M(A) et
m(M(A)).

b) Ainsi le cercle R/Z de la méthode classique a pour analogue adélique
le quotient compact A/Q et les nombreux arcs majeurs classiques associés & un
meme A > 0, trouvent leur analogue adélique dans un unique ensemble M(A)
(ou m(M(A)) si on préfére). Cette présentation de I'arc majeur adélique est due
a Lachaud (cf. bibliographie).

Au paragraphe 1, au moyen d’une formule de Poisson, on compare, pour
§ e M(A), la somme H(E) et I'intégrale F*(€). On obtient ainsi le

THEOREME 1. Pour A suffisamment petit, il existe 8, > 0 tel que

J (HE) —F*E)W(<E —v>)dE = O(P" "%,
M{(A)

Au paragraphe 2, on majore la somme H(E) sur Iarc mineur adélique
(A/Q)" — n(M(A)), obtenant le

THEOREME 2. Sous les hypothéses (H1) et (H2) et pour B et P
convenablement choisis, il existe &, > 0 tel que

f HEW(<E, —v>)dg = O(pP %),
(A/Q)" ~ n(M(4))

Au paragraphe 3, on majore Iintégrale F*(E&) sur A" — M(A) pour
démontrer le
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THEOREME 3. Sous les hypothéses (H1) et (H2), il existe &3 > 0
tel que

J F*QW(<E, —v>)dE = O(P"""™%).
A" — M(A)

Remarque. Une conséquence du théoréme 3 est que F* € L(A").

Ces trois théorémes permettent d’obtenir la formule asymptotique désirée.

ProrosITION 4.1. Sous les hypotheéses (H1) et (H2), pour % et P
convenablement choisis, pour tout veZ’, il existe & > 0 tel que
AN
Y 9u(x) = F¥(—v) + O(P""77).

xeZn

fx)=v
Au paragraphe 4, on utilise les hypothéses (H3) et (H4) pour rendre
effective la formule asymptotique précédente. On démontre ainsi le

THEOREME 4. Sous les hypothéses (H1), (H2), (H3) et (H4), pour
A et P convenablement choisis, on a

AN
F¥(—v) » pr—m,

Il résulte de tout ceci le

THEOREME PRINCIPAL. Sous les hypothéses (HI1), (H2), (H3) et (H4)
le systeme diophantien f = v admet une infinité de solutions entiéres.

Un corollaire évident de ce Théoreme Principal, pour v = 0, énonce
quun systeme f répondant aux hypothéses (H1) et (H2) observe le
Principe de Hasse fin.

Enfin le paragraphe 5, on 'a déa compris, est consacré a des expli-
cations complémentaires et a des exemples suivant les travaux de Birch,
Davenport et W. M. Schmidt; mais on ne trouvera dans ce paragraphe aucune
démonstration a 'opposé des paragraphes 1 & 4 ou on s’est efforcé d’étre le
plus complet possible.

§ 1. ARC MAJEUR

Le but de ce paragraphe est une bonne majoration de la différence
entre la somme H(E) et l'intégrale F*(§) lorsque & appartient 4 un arc
majeur M(A).
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Pour cela on utilise la formule de Poisson (1.1) généralisant ainsi la
démonstration de Lachaud dans son théoréme 2.9.

Les lemmes 1.1, 1.2 et 1.3 concernent les places finies, ne font appel
qu’a ’hypothese (H1) et obtiennent une majoration intermédiaire qui dépend
essentiellement de la place infinie.

Cette derniere est 'objet, au cours des lemmes 1.4, 1.5 et surtout 1.6,
d’une démonstration particulierement technique, c’est-a-dire réservée au
lecteur courageux, mais qui utilise seulement I'appartenance de £ a un arc
majeur. On obtient ainsi une majoration suffisamment bonne pour la démons-
tration du théoréme 1 qui termine ce paragraphe.

Soit Papplication A qui, a tout élément x de A" associe le nombre
complexe

h(x) = e((<&, f(x)>).

L’application & dépend du paramétre £ € A", mais, par commodité, celui-ci
n’est pas écrit. Comme h est une application de Schwarz-Bruhat, la formule
de Poisson suivante est vraie:

A~

(1.1) Y, h(x) = ) h(y)

xeQn yeQn

ou

~

h(y) = J PNV <E, f(x)> + <x, y>]dx.
An

Pour une justification de cette formule de Poisson on peut se référer
a: Godement, « Adéles et idéles » cours L.H.P.

Puisque les fonctions ¢ et y sont décomposables, il en est de méme
de h et de h, ainsi h(y) = h(y,) H }?p(yp), ou « H » désigne le produit sur
p p

toutes les places finies.

LEMME 1.1. Posant q = Max(l, | &plp) ona

-~

(1.2) h(p) = 07" X (<&, f)>+<y,,u>)

ue(Zp/qZ p)"

si y,eq 'Z%,
(1.3) =0 si y,éqtZn.
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Démonstration. Puisque ¢,(x,) = IZ;(xp ), on a
h,(x,) = J ) V,(<E,, f(x,)>+ <X,,y,>)dx,
Z
p

= ZJ‘ n\l’p(<§p>f(xp)>+<Xp,yp>)dxp

avec u décrivant un systéme de représentants de (Z,/9Z,)".
Mais la fonction qui, & x,, associe V,(<§&,, f(x,)>) est constante sur
les classes modulo g Z}. Car, en prenant v élément de Z), on a

<&p» fxp,+qv)— flx, Z &, p (fi(x, +qv)— filx,))

et par la formule de Taylor,

fi(x,+qv)— Z ———-(x qu; + ...

Or x,eZ}, vel} et toutes les dérivées (méme divisées par |k|!,
ou | k | désigne, selon l'usage, la somme des ordres des dérivations partielles
selon les x;) sont des polynomes a coeflicients entiers. De plus, g est
présent avec un exposant au moins égal a un dans chaque terme de la
formule de Taylor; donc f;(x,+qv) — fi(x,) € g Z, et, compte tenu de la défi-
nition de g, on a

<§p> f(xp+qv)_f(xp)> eZp

et donc

Vo (<&, [, +qu)>) = (<&, f(x,)>)

puisque le caractere |, est trivial sur Z,. Ainsi,

1y (v,) = Z\l!p(<§p,f(u)>)J Vo (<x,, yp>)dx,

u+qZ

= Z\lfp(<§p,f(u)>+<yp,u>)f n\),lp(<xp,yp>)dxp

9Z,

car dxp est une mesure de Haar. Enfin

J n\j/p(<xp,yp>)dxp =q " si y,eq 'Z},
9Z,

=0 si y,éq ‘7,
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puisqu’il s’agit de I'intégrale, pour une mesure de Haar, d’un caractere sur
un sous-groupe de Q7. On obtient ainsi le résultat annoncé pour h (V)

[

LEMME 1.2. Sous 'hypothése (H1) ona

(1.4) 1B (v,) | < ©,(q y,)q 2"

Démonstration. Rappelons que ¢ = Max(1,]§, | ,)-

Soit y,¢q 'Z}, comme @, = lz7, on a: ©,(qy,) = 0. Mais, d’apres
Pégalité (1.3), on a aussi };p(yp) = 0 donc linégalité (1.4) est vraie dans
ce cas.

Soit y, € g~ *Z}, il vient @,(qy,) = 1. En utilisant I’égalité (1.2) et I'iso-
morphisme bien connu entre Z,/qZ, et Z/qZ, on obtient
(1.5) b, =a " Y V(<& f@>+ <y, u>).

ue(Z/qZ)"

On peut ici remplacer &, par tout élément de sa classe modulo Z7, et,
en particulier, chaque §; , peut étre remplace par sa partie polaire, dans

a:
son développement hensélien qui est de la forme — avec pged (ay , .., ,, ) = 1

puisque ¢ = Max (1,]¢&; , | o)

1<isr

En désignant par %, la boite unité usuelle de R” l'identite (1.5) devient

(1.6) i?p(yp) =q " ) exp [2in<i %fj(u)—i— <V u>>]

ueqBon 1" =1

On reconnait une somme S(a), au sens du paragraphe B de lintro-
: a; .
duction, en prenant 4 = %,, P = q,a = (—) (I<isrjetg(u) = <y,,u>
q

avec d°g = 1 < d; cette derniére condition, concernant g, a été précisée
au moment de la définition des sommes S(a); on trouvera I'explication de
son existence au paragraphe 5A).

Un point important est que la majoration qui va suivre ne dépend pas
des coefficients de g; elle est donc uniforme en y,.

Les inégalités du cas ii) de 'hypotheése (H1) sont ici

| qa;—aiq| < q' 7% (I<i<r) et 1<q <4q°,

elles sont insolubles pour A < 1. En effet, dans ce cas et puisque d > 2

onal—-d+ A<0dougqa —a;jq=0 (1<i<r) (comment étre entier
et de valeur absolue < 17?).
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. a, a; . ., . ’
On aurait donc— = — mais aussi ¢’ < ¢ ce qui contredit pged(a, , ..., 4,, )
q q

= 1; donc le cas ii) est impossible et on se trouve dans le cas i) de
I’hypothese (H1). Ainsi pour tout € > O et pour 0 < A < 1, on a

AQ+e

| h,(,) ] < g~

D’ou le meilleur résultat qui puisse s’en déduire

Q+e

| hp(v,) | < g

L’inégalité (1.4) est donc vraie pour toutes les valeurs de y,. O]

La fonction Q(&) = [ Max(l,|§,|,) a déja été définie au paragraphe D
p

de l'introduction. Il ne s’agit pas vraiment d’'un produit infini puisque, pour
tout £ ¢lément de A’, les facteurs différents de un sont en nombre fini.

Cette fonction interviendra souvent dans ce travail. Il a déja été dit dans
I'introduction, mais il est bon de le rappeler, qu'elle ne dépend pas de &, .

Remarque. Pour tout entier premier p,, on a

Q&) = Max(L, [ £, | ,) [] Max(1,]€,1,)

PF po

mais, pour tout p # py, la quantité Max(1, | &, | ,), qui est une puissance de p,
est une unité py-adique. Donc, puisque ¢, = IZZO’ on peut écrire

(1.7) Ppol QE)po) = PpolVio MaxX(L, [ £y | o)) -

LEMME 1.3. Avec les notations précédentes et sous hypothese (H1), on a,
pour tout & e A’, linégalité

| HE) — F*E) | < Q)2 Y [ h(0E) 7).

z#0

Démonstration. On a, par définition de la fonction F*:

F*(E) = f PEY(<E f()>)dx = h0)

donc, en utilisant la formule de Poisson (1.1), on trouve que

HE) — FXE) = Y ho(yeo) [1,0,) -

yeQr p
y¥#0
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Avec linégalité (1.4) du lemme 1.2 et Iégalité (1.7) de la remarque ci-
dessus, 1l vient

(1.8) |HE) — F*O) | < Y 1ho() I T] 0,(Q6),)0@) .

yeQn p
y¥0

Bien sfr la fonction Q(&) ne dépend ni de I'indice p, ni de ye Q" — {0};
de plus, & cause du produit [| ¢,(Q(&)y,) et de I'égalité ¢, = 127, la somme
p

(1.8) peut se réduire aux y tels que Q(§)y € Z". On obtient donc
(1.9) | HE) — F¥E)| < 0©) " X | h(QE) 7). 0

ze"”

z#0

Il faut désormais majorer la somme présente dans le membre de droite
de I'inégalité (1.9) et qui ne concerne que la place infinie. Cest I'objet des
lemmes 1.4, 1.5 et 1.6 qui suivent.

Soit u une fonction de Schwartz sur R"”. Pour tout ¢t ¢léement de [0, 1]",
nous noterons u* la fonction définie par

u¥(t) = ) u(x+t).

xedn

LEMME 1.4. Avec les notations précédentes, on a

Y, Ldy)|? =f | u*(t) | %dt .
[0, 11

yedn

Démonstration. Appliquons a la fonction u* I’égalité de Parseval-Bessel;
on trouve

f |u¥(t)|2de = ) |uj|?
[0, 117

peZn

ou

u} = J u*(t)e* " <pt> gt
[0, 11"

est le coefficient de Fourier d’indice p de la fonction u*; par suite

n¥ = ¥ u(x +t)e* ™ <Pt>dr
xeZn J [0,1]"

car I'interversion de la sommation et de l'intégration est justifiée puisque u
est une fonction de Schwartz. Posons z = x + ¢; il vient
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u* = Y e_Zi"<p’x>f u(z)e? ™ <P=>dz;
x+[0, 1]

xeZn”

mais si <p, x> e€Z,onae ?"P* =1 dou
* 2in<p,z> g, _
uk = j u(z)e*"~P*7dz = u(—p)
RH
et finalement

ZW(Y)lZ:[ | w*(1) | *dt . O
[0, 1

yeZn
Soit maintenant Py(D) l'opérateur différentiel associé au polyndme
homogene en n variables, de degré k = 2s
Po(xy, .y X)) = (x24+...+x2)".

Selon I’habitude, le symbole [o] désignera la partie entiere du réel o.

n
LEMME 1.5. Avec les notations précédentes et pour k >;[Ei| + 2, ona

linégalité

1/2
S )| < [ j | (Po(DWD) |2 dr}
[0, 1]"

yeZn
y¥#0

la constante impliquée par le symbole « < » dépendant seulement de k et
donc de n.

Démonstration. Une propriété classique de la transformation de Fourier
s’écrit

(Po(D)u)*(z) = Po(Rinz)i(z) = (2im)* Po(2)i(z) .

Appliquant le lemme 1.4 & la fonction de Schwartz (Py(D)u), il vient

f | (Po(D)u)*(t) | 2dt = ). | (Po(D)u) () |?
[0, 11"

yeZn

= 2m)* X | Po)ily) 2.

yen
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1 : : ) :
Pour que la série ). soit convergente, il faut que l'on ait

5P |2
y¥#0

n . :
2k > n+ 1, ce qui, pour k entier, est obtenu lorsque k = [5] + 1; mais on sait

que k est un entier pair d’ou la condition, valable pour tout n,

N i )

Appliquons alors l'inégalité de Cauchy-Schwarz aux deux séries de carré

sommable, zgn | Po(z)illz) | et zgn el On trouve
z#0 2#0
2 5 1
L;n | lz) |J « LGZZH | Po(y)i(y) | ] Lgn Po(y) | 2] :
z#0 y#0 y#0
Comme Po(0) = 0, on a . |Po(yid(y)|? = ) | Po(y)i(y)|* et donc
yeZn" ;E#Z(’)'
1/2
Y dy) |« [J | (Po(D)u)*(t) | * dt} -
yeZn o, 1]
y¥0

La constante impliquée dans le symbole « « » provient de (2m)** et de

1
yezl:n | Po(y) 1%’

y#0

et dépend donc seulement de k (donc de n) et de P,.

Comme on peut toujours multiplier P, par un coefficient arbitraire,

le symbole « « » pourrait méme €tre remplacé par « < » pour des polyndmes
P, convenables. U

Remarque. Les lemmes 1.4 et 1.5 constituent la généralisation a n variables
du lemme 2.11 de Lachaud.

COROLLAIRE. Soit le réel a > 1, soit la fonction v(x)
avec les conditions du lemme 1.5, on a

1/2
(1.10) %z | dly/a) | « U |(P0(D>v)*(r)|2dtJ .
[0, 1]"

yeZn
y+0

= u(ax); alors
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1
iy) = E ) <§>

et I'inégalité (1.10) s’obtient en appliquant le lemme 1.5 a la fonction v.  []

Démonstration. On a

Reprenons, au lieu de la fonction u des deux lemmes précedents, la
fonction h(x) = @ (x)exp *" <%= /™>: rappelons que ¢, = 0 * 1pp (pro-
duit de convolution) avec 0, fonction C* a support compact aussi petit que le
besoin s’en fera sentir et voisinage de 0. De plus, nous imposerons 6 > 0
et, par commodité, 6 paire.

Comme 1,4 est la fonction caractéristique de la boite P#, la fonction
@, apparait comme un « adoucissement » C® des discontinuités évidentes
de 1p4.

On notera, comme dans tout ce travail, | £, | = sup|&; , |. Enfin le

14

lecteur doit distinguer le polynéme P, qui intervient dans les lemmes 1.4,
5 et 6 de la variable P qui figure dans tout ce travail.

LEMME 1.6. Avec les notations précédentes et sous les conditions

(1.11) 1€ | S P79%4% ot QE)< P* avec O0<A<l1.

On a

(1.12) Y 1k (0©) '2)| « o@lz]2 proiva
zedn
zF0

Démonstration. Sa longueur nous contraint a la scinder en une introduc-
tion, une partie A, une partie B et une conclusion.

Introduction. Soit la fonction v(x) = h(ax) = uy(x)vy(x) produit des deux
fonctions

uo(x) = exp(—2in<&,, f(ax)>)
et
vo(X) = @ lax).

Pour étudier la fonction Py(D) (uyv,), on utilise la formule de Leibniz

(1.13) Po(D) (ugvo) = Z (Djuo) (Po(j)(D)Uo) Ugnh™t,

il sk
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dans laquelle les notations utilisées sont classiques: le multi-indice
j=(1,-sjn) est tel que 0<|j|=j + ..+ j, <k (rappelons que
k = d°P,), P, désigne la dérivée D’P, du polyndme P,, D’u, désigne la
dérivée d’ordre j de la fonction u,, enfin on a

J! :jl!'“jn!;

on trouvera une justification de cette formule de Leibniz, par exemple, a la
page 10 du livre d’Hormander, « Linear partial differential operators »
(Springer, 1962).

Le nombre de termes dans la somme du membre de droite de l'égalité
(1.13) dépend seulement de k et donc de n puisqu’en définitive on posera
k = B} + 2; ce nombre de termes est donc indépendant des variables a,
et P.

Il faut maintenant étudier chacun des termes de cette somme. Nous dis-
tinguerons le cas général ou j # 0 (partie A) du cas particulier j = 0
(partie B).

Partie A. Casj # 0.

La fonction D/u, est une somme de termes qui sont de la forme
Cx)ug(x), ou C(x) est un polyndme obtenu comme produit, pour des multi-
indices s non nuls, de polynoémes dérivés D(—2in<&, f(ax)>).

Pour mieux comprendre la phrase précédente, voici un exemple dans le

casj = (2, 1,0, ..,0) obtenu en posant w = —2in<&_, f(ax)>:
AN P w o N Pw ow L o*w  Ow
e¥ = ——e — —e — e”
dx 20x, ox 0%, ox? ox, 0x,0x, 0x; ¢
ow Ow Jdw

0x; 0x,; 0Ox,

On y trouve cinq termes de la forme annoncée, on peut donc trouver
plusieurs fois le méme C(x); le dernier terme écrit correspond aux multi-
indices s; = (1,0,..0) = s, et s; = (0,1,0,..,0), on peut donc trouver
plusieurs fois le méme multi-indice s dans un polynome C(x).

Clairement le nombre de termes nécessaires pour écrire ainsi la fonction

D’u, dépend de j et, puisque | j| < k, ce nombre est borné indépendemment
de a, £ ou P. Enfin, le cas j = 0, et lui seul, échappe a ce qui vient
d’€tre dit et c’est la raison de son exclusion.

L'expression w = —2in<&_, f(ax)> est un polynome homogéne en x
(de degré d), en a (de degré d), en £_ (de degre 1). Ainsi a-t-on Pinégalité
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(1.14) | DXw) | < a® | x [*7F &, |

valable pour 1 < |s| < d; pour |s| > d on a bien sir D’(w) = 0 et la
constante sous-entendue par linégalité (1.14) dépend des coefficients des
formes f;, du multi-indice s mais ne dépend pas de x, & a ou P.
Comme nous étudierons la fonction (D/u, PY(D)vy)* et comme vy(x)
= @ (ax), on ne fera usage de Il'inégalité (1.14) que pour des x € R" tels

P . . ’ Y . I3 L4 4
que | x | « —, la constante impliquée par cette derniere inégalité dépendant
a

de la fonction 6 et de la boite # mais non de x, § a ou P. Plus préci-
sément, il existe f > 0, dépendant de 6 et de # tel que le support de la
fonction ¢ soit inclus dans la boule de centre O et de rayon BP.

Donc pour tout ¢ élément de [0, 1]" et pour tout x tel que

P
(1.15) x| = B— + 1
a
on a
P
| x+t]| = B—
a

et donc (ax+at) ¢ Support de ¢, et a fortiori (ax+ at) ¢ Support de
PY (D)o, ; comme de plus

(PE (D)) (x) = a"(P§ (D)o,) (ax)
on obtient pour tout te [0, 1]" et tout x vérifiant I'inégalité (1.15):
(1.16) (PY (D)) (x+1) = 0

Mais, et c’est un point essentiel de la démonstration, puisque A < 1,
on aura

a< P*<P

P .
et — est donc beaucoup plus grand que 1 dans les conditions du lemme.
a

En posant, par exemple, « = B + 1 on constate que tout x tel que
| x| > a—
a

satisfait a Uinégalité (1.15) et, par suite, a égalité (1.16).
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P . ’ . 9 r . r
Ainsi, pour | x | « —, l'inégalité (1.14) devient I'inégalite
a

| D¥(w) | « @l PRI E ]

Comme I'une des hypotheses du lemme est

|6 | < P70

on obtient
| DS(w) | < alst plsi+a
et donc
(1.17) | C(x) e~ 2<Earf@> | « ] abl polsiea

certains §

Définissons la fonction

N(x) = (P (D)) (x) C(X)uo(x) .

P
En tenant compte de I’égalité (1.16), valable pour | x| » —, et de I'iné-
a

galité (1.17), 1l vient

| N*(t) | « [ [] d Ph‘s‘“} [ Y H(PY (Do) (x+1) l]

certains s xeZn
x| <7
(1.18) « ([] al*! P11+ 4)ql [ Y (P (D)¢y) (ax+ at) q
§ er'i)
Ix| <

Dans cette derniére ligne, 'exposant total de la variable a est

i+ X Isl=k

certains s

parce que le polynome P, a été choisi homogene. De plus, la fonction

PY (D)o, est bornée, indépendemment de a, & ou P, comme le montre le
calcul suivant

[ (PP (D)o.) (1) | = | PY(D) U 0(t ~X)1m(X)dX]I

= | J (PS (D)B) (t—x)1 pglx)dx |
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= IJ (P (D)8) (x)1pg(t —x)dx |

< J | (PP (D)0) (x) | dx .
R

Cette derniére intégrale existe puisque 0 est C* a support compact,
sa valeur ne dépend ni de q, ni de &, ni de P.
Il en résulte que

o p"
Y (PP D)o, (ax+at) | « —
xeZn a
|x| < P/a
la majoration obtenue étant une estimation classique (a une constante pres!)
du nombre de x € Z" et tels que | x | « P/a.

En reprenant I'inégalité (1.18), on obtient

| N*(t) | « a*=" prr¥a-ish

Dans cette derniere inégalité, la somme qui figure dans I’exposant de
la variable P comprend au moins un terme. Comme, de plus, on sait que
A < let|s| =1, ontrouve que

SA-|s) < — 1+ A

I’égalite¢ pouvant avoir lieu, par exemple lorsque |j| = 1. Il s’ensuit que

(1.19) | N*(t) | « @~ " pr=1+a

Nous avions dit, au début de cette partie A, que la fonction Diu,
était une somme de termes de la forme C(x)e”, le nombre de ces termes
étant majoré indépendemment de a, £ ou P. Il est aussi clair que lappli-
cation qui associe, a une fonction de Schwartz u, sa « périodisée » u*,
est une application linéaire. Dans ces conditions l'inégalité (1.19) devient,
pour toutj # 0,

(1.20) | (D'ug PY(D)o)*(t) | < a*~" Pr=t+a.

Partie B. Casj = 0.

On a dé¢ja dit que la démonstration de la partiec A ne pouvait servir
dans ce cas puisque celle-ci repose sur I’existence d’au moins une fonction -
dérivée D%(w), avec | s | = 1, en facteur de la fonction e".
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On a tout d’abord, puisque | D%uy | = | €| = 1,
| (D% Po(D)oo)*(t) | < 3, | (Po(D)vo) (x+1) |
xeZ"r
a Y, | (Po(D)oy) (ax+at)|.
xeZn

Comme le polyndme P, est homogéne de degré k > 1, la fonction
P,D)o, est combinaison linéaire de dérivées de ¢, , mais non de @
elle-méme ; or toutes ces fonctions dérivées sont nulles dans les domaines ou
¢, est constante.

Soit H le tube dont la base est le bord de la boite P# et dont
épaisseur est < 1. Puisque nous savons que ¢, = 0 * 1,4 et que le support

1 " . :
de la fonction 0 est, par exemple, inclus dans [— 7 + 5] , 11 en résulte
que la fonction ¢, est constante dans le complémentaire de H.
Il est clair que le volume de H est de l'ordre de la surface de la

boite P# c’est-a-dire que
vol(H) « P"~1;

n—1
et le nombre d’¢léments x de Z", tels que (ax+at)e H, est donc «

an
I vient donc I'inégalité

(1.21) | (Do Po(D)wo)*() | < @™ P~ 1.

Conclusion: Reprenons la formule de Leibniz (1.13); grace aux inégalités
(1.20) et (1.21), on trouve

l (PO(D)U)*(t) | « gt—n pr-i+a

avec, rappelons-le, v(x) = h_(ax).
En appliquant maintenant le corollaire du lemme 1.5, on obtient

Zlh ()l«a prTds

yeZn
y¥0

n
Prenant enfin a = Q) > 1 et k = Ijz} + 2, on obtient le résultat

de ce lemme:

Y 1 ho(Q®)12) | « oE)lz]+2 proiea 0

zed”
zF0
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Remarque. Dans cette derniere majoration, on ne peut espérer mieux que
P"~ 174 si ce n'est peut-étre P""! ou P" " '*t pour tout € > 0, de peu
d’avantage puisque cette majoration sera utile dans le cas ou A est trés petit.

En effet, pour £ = 0, on a

he(y) = ©(») = 8(») 1ps(y)

avec

k=1 Pak

n Pby
Tpaly) = J et mdx = [ J €™ d
P#B

sionadéfini: B = {(x;,...,x,)ER"|a, < x,, < b, 1 <k <n}.

De plus, on a

Pby.
J‘ e—Zm Xk Vi dxk — (2iTCyk)_1 [e-ZLn yi Pag _e~2m Vi Pbk] ; Si Vi ?é 0

Pag,

= P(bk_ak)> Si yk = O

Donc, lorsque P — oo, les termes.prépondérants dans la somme

S 100) | | 1ps) |

yeZn
y¥0

sont clairement ceux tels que tous les y, soient nuls sauf un et ces termes
sont de I'ordre de P~ 1.

Au contraire, si on fait intervenir la variable a dans le précédent calcul
et sous les conditions 1 < a < P? et A <1, on est conduit, les termes
prépondérants restant les mémes, a une estimation en (a Log a) qui indique

n
la médiocrité du a[f] *2 obtenu.

n . :
Heureusement cette puissance [§:| + 2 de la variable a = Q(£), qui est

donc probablement trop grande, n’aura aucune conséquence facheuse dans la
suite de ce travail parce qu’il sera toujours possible de prendre A aussi petit
qu'on le désirera: un coup de chance qui ne se retrouve pas dans d’autres
applications de la méthode du cercle (Davenport dixit).

Au paragraphe D de l'introduction, nous avons défini, pour tout A > 0,
I’arc majeur

M(A) = (EAT| |E,| < P74 ot Q) < P4}
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LEMME 1.7. Soit w la projection canonique de A" sur (A/Q)"; alors,

si A< 3 la restriction de m a larc majeur M(A) est injective pour P

suffisamment grand.

Démonstration. On a les propriétés suivantes de la fonction Q(&):

QE+8) < QB)OEF)

et

Q(—¢€) = Q).

Prenons & et & dans M(A), il en résulte

0(E—t) < 0(6)QE) < P

et

1€ —En | S 1|+ 18| S2P744.

De plus, une conséquence facile de la formule du produit pour les
nombres rationnels non nuls est que, pour tout ze Q" — {0}, on a

|z, [ Q(z) = 1.
Comme nous avons obtenu
|Ee—EL | QE—E) <2P79734

. : d 1
la conclusion s'impose pour A < 3 et P > 24734 O

Remarque. Lorsque © est injective sur I'arc majeur M(A), les mesures de

Haar p(M(A)) et p(n(M(A))) sont égales.
Nous pouvons enfin démontrer le principal résultat de ce paragraphe 1:

THEOREME 1. Sous les hypothéses (H1) et (H2) et pour

o< (3

il existe &, > 0 tel que, pour tout veZ’, on ait

J e HEN(<E, —v>)dE = J F¥*ENI(<E, —v>)dE + O(Pn-rd—sl). |

M(A)
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Démonstration. En utilisant le lemme 1.3, on obtient

| HEW(<E, —v>) — FXEN(<E —v>)| = | HE) — F©)]
< QE)T Y | h(0E®)12)|;

zedn
zF0

puis, en vertu du lemme 1.6, pour £ € M(A) et A < 1, il vient

|HE) — F*E) | « o) 2+s+[5]+2 pr-1+a
« o(e)-a+e pr-1+a([5]+3)

En suivant le lemme 1.7 et la remarque qui le suit, nous obtenons, pour

A<g:
3

’J » )H(&)\b(<&, —v>)dE — J' F*EW(<E, —V>)d5_,’
n(M(A) M(A)

<J ( | H(E) — F*() | dg
M(A)

(1.22) « l:f P"_HA([;—]”) d?;ooJ |:J‘ 0E) """ ® d&p} :
e | <p=d+a ' Q)< PA p

L’hypothése (H2) a, pour principal avantage, d’assurer la convergence,
quand P — co, de la derniére intégrale puisque nous pouvons choisir € tel que

O<e<Q—r—1.

Une démonstration de cette convergence est proposée au lemme 3.3 de
ce travail.

Il reste donc 'expression

a2y [ el g, = o) o
£l SP7F4

— Pn—rd—l +A([‘;‘] +r+3) )

n -t d
A< ([5}+r+3> < 1nf<1,§>.

Prenons donc
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6, =1 — A([;}+r+3> > 0;

alors l'expression (1.23) et, par suite, le membre de droite de linégalité
(1.22) sont des

Posons

O(Pn—rd—él) :

le Théoréme est donc démontré. H

Remarque. Au lemme 1.2, on peut se passer de 'hypothése (H1) et majorer
trivialement le résultat du lemme 1.1, on obtient, avec ¢ = Max(1, | §, | ,):

(124) | h,(,) | < 0, 9,).
Alors le lemme d1.3 nous donnerait seulement
(1.25) |HE) — FXE) | < Y | ha(0E)12)| .
zed"n
z#0

Bien évidemment, les lemmes 1.4, 5 et 6 n’utilisent pas les hypotheses
(H1) et (H2). Enfin on peut aussi abandonner I’hypothese (H2) dans la
démonstration du théoréme 1, quitte a rendre A encore plus petit mais nous
avons déja dit que c’est sans importance sur le reste de ce travail. Le
jecteur vérifiera facilement que ’hypothese

<Gy

vermet la démonstration du théoréme 1 sans utiliser les hypothéses (H1) et
{H2).

Ainsi, au paragraphe B de I'Introduction pourrait-on supprimer tout ce
Jui concerne le polyndme quelconque g de degré < d, simplifiant ainsi
"hypothése (H1) sans rien modifier au résultat de ce travail.

Toutefois, comme I'explique le paragraphe 5A), 'hypothése (H1) provient
d’'une méthode proposée par Weyl dont les résultats sont indépendants de
tiout polynome g de degré < d figurant dans I'expression des sommes S(a).
Dans ces conditions, la simplification envisagée n’est qu’un succes a la Pyrrhus.
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§ 2. ARC MINEUR

On entend ici par « Arc Mineur », le complémentaire dans (A/Q)" de
I'arc majeur M(A). On désire majorer le module de la somme H(&) lorsque
¢ appartient 4 un tel arc mineur.

Pour cela, I'hypotheése (H1) est indispensable. On définira d’ailleurs un
ensemble T(A) = M(A), mieux adapté a 'hypothese (H1) et on obtiendra, au
lemme 2.2 une majoration de | H(E) | pour & appartenant au complémentaire
de T(A) dans (A/Q)'.

Nous aurons ainsi les moyens de démontrer le principal résultat de ce
paragraphe, c’est-a-dire le théoreme 2. Enfin 'application stricte de I’hypothese
(H1) qui concerne des sommes trigonométriques d’un type précis nous
contraint a des précautions qui sont ’'objet du lemme 1 et qui compliquent
légerement, mais sans aucune conséquence sur les principaux résultats de ce
travail, ’énoncé du théoréme 2. Ces précautions concernent le choix de la
boite # puis celui de la variable P.

LEMME 2.1. Il existe un sous-ensemble dense & de I'ensemble des boites %
de R" tel que, pour toute boite A de &, il existe un sous-ensemble non
borné¢ de R, noté P(#H) avec, pour tout P élément de P(AB) et
pour k égala O ou 1, [légalité suivante

(2.1) Z" ( (0%1p5) " W((k)) = Z" A 154 ({K)) .

Remarque. Une explication romanesque du lemme 2.1 et de sa démons-
tration serait la suivante.

L’adoucissement de la fonction 1,4 réalisé par le produit de convolution
B % 1,5, se produit au voisinage du bord de la boite P%. Si ce bord

est a distance > 3 du réseau Z" et si I'adoucissement est suffisamment

1 1

rapide (support de 6 [— 3’ + g], par exemple !) il ne concerne aucun

point de Z".

Démonstration du lemme 2.1. Une boite # de R" est un n-parallélépipede
de cotés paralléles aux axes, ou encore # = {x e R" /(1<i<n), a; < x; < b;}.

Considérant E = {(ay, by, .. a,,b)eR*" /(1<i<n), a; <b;}, sous-
ensemble ouvert de R?", en bijection naturelle avec ’ensemble des boites &
de R", on peut définir sur E une topologie évidente et donner un sens
non moins évident a 'expression: « & est dense dans E ».
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On peut aussi restreindre E par des conditions supplémentaires comme,
par exemple:

Max (b;—a) <1 ou Max(al|b]) <M.
Définissons alors I'ensemble ¥ = {Be E|(a,, by, .., a,, b,) est une famille
finie de nombres réels linéairement indépendants sur Q}.
Pour des raisons de dénombrabilité, & est dense dans E
Soit maintenant B € & ; le théoréeme de Kronecker (cf. Hardy and Wright,
“The theory of numbers”, Oxford Press, Théoréme 444) dit justement que,

pour tout € > 0, il existe un sous-ensemble non borné de R que nous
noterons 2 (%) et tel que, pour tout Pe P (%) et pour tout i€ {l,..,n},

on ait
P ! < t Pb . <
a. — — e L — —
i~ 3 e i 5 €

. 1 1 1"
En choisissant & = ¢ et le support de 6 inclus dans ,:— §,+ —] , on
se convaincra que
{(XeZ"| 0% 1pg(x) # lpg(x)} = @

ce qui constitue le résultat de ce lemme. ]
Définissons maintenant, pour A > 0, ’ensemble

T(A) = {EeA| &, 1QE) < P77 et Q) < P}

ou, mais il s’agit d’un rappel !
Q) = [[Max(1,]¢&,1,).
p

Puisque nous avons Q(§) > 1, I'inégalité

|8 | Q) < PTO74
‘ntralne 'inégalité
| | < P74

:t on obtient donc: T(A) = M(A). Ces ensembles T(A) sont bien adaptés a
‘hypothése (H1) comme le montre le lemme suivant.

LEMME 2.2. Avec les notations précédentes et sous Phypothése (H1),
pour tout & e A" tel que
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(2.2) n(€) ¢ (T(4)) ,

ou T est la projection canonique de A" sur (A/Q), on a, pour toute
boite %€, pour tout P e P(B) et pour tout & > 0, linégalité

(2.3) | HE) | « Pr=897e,

Démonstration. Dans une premiere partie, on réécrit la somme H(E)
sous la forme d’une somme trigonométrique S(o) pour un o convenable.
Dans une seconde partie on applique ’hypothese (H1) a cette somme S(x).

1" partie. Nous savons que, par définition, nous avons ’égalité

HE) = ), o) V(<& f(x)>).

xeQn .

Puisque, pour tout entier premier p, on a ¢, = 122 , la somme peut se

reduire aux x € Z".
Puisque 4 € & et P € P(A), I'égalité (2.1) nous permet d’écrire la relation

(2.4) HE) = ) Vo(<€u, f()>) [[V(<E,, f(x)>).

XEPBNLN

Suivant alors une remarque qui a déja servi dans la démonstration du
lemme 1.2, nous pouvons remplacer ¢, par la partie polaire de son déve-
loppement hensélien puisque f(x) € Z" et que le caractere \, est trivial sur Z',.

Cette partie polaire s’écrit

a Ap, 1 Ap, r . . §
== 4 avec les conditions qui la caractérisent
p

qE,)  \qE,)’ )
0<a,; <qE,) ((I<i<n),

pged(a,, 15 ap,,p) = 1,
q(&p) = Max (1> I E.vp,i |p) .

1<isr
On obtient alors I'égalité
, a
(2.5) HE) = ) explin<—&, + Y —F—, f(x)>).
XEPBNL" p Q(E_,p)

Comme il n’y a quun nombre fini d’entiers premiers p, tels que
q(&,) > 1 ou, ce qui est équivalent, a, # 0, la somme figurant dans 'exposant
ci-dessus a un sens.
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De plus, pour ce nombre fini d’entiers premiers p, on a q(§,) = p°
avec a > 1, donc le p.p.c.m. de différents g(§,) n’est autre que leur produit.
On obtient ainsi

y 9 a(g)

= 5l ¢ d r
&) o (CementdeQ)

avec

Q) =[] 4(&,)

et

pged(a,(€), .., a,(£), Q(E)) = 1 (on ne considére que les a,&) # 0)
0<a()<QO ((OA<isn).

Il vient donc

. a(&)
(2.6) HE) = Y explin< —E, + —, f(x)>).
xePBAL" Q(EJ)
L’¢galité (2.6) montre que la somme H(E) est une somme trigonométrique
a(§)
S@) pourg = 0etoa = —— — & .
Q(8)
2¢ partie. Soit A > 0, supposons que «, trouvé ci-dessus, soit dans le cas ii)
de I’hypothése (H1), c’est-a-dire qu’il existe g_ (a—l, ey &> ¢léement de Q"
q q q
tel que:
0<a <q (I1<i<r),
pgcd(ag,....,a,,q) = 1,
1 <q< P,
a; 1
lo, — | < -p~4*A (I<i<r).
q q

L’ultime condition est équivalente a I'inégalité

{2.7) —E_ @ _a < lP—d+A.

QC)  q] ¢

Considérons I’élément { de A" tel que { = & — @ -+ E.
Q@) ¢q
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a(g)

Puisque, pour tout entier premier p, on a (& — ——) e Z’,, on obtient
p

0(E)
0(0) = Q(f) ~q.
q

En conséquence, I'inégalité (2.7) devient

|8 1 Q) < P74

comme de plus
l<g=900Q <P
on constate que { € T(A). Enfin, puisque ({—&) € Q’, on obtient
HE) = HE) et n(g)en(T(A)).

Si, maintenant, nous imposons la condition m(€) ¢ n(T(A)), alors, par
contrapposée, o n’est pas dans le cas i) de ’hypothese (H1); il est donc
dans le cas i), d’ou I'inégalité

|H(é)| « Pn—AQ+a
qui acheéve cette démonstration. O

Nous avons encore besoin d’un majorant de la mesure de T(A) qui est
I'objet d’un dernier lemme.

LEMME 2.3. On a linégalité
(28) H(T(A)) < P—rd+(r+1)A.

Démonstration. Dans la démonstration du lemme 2.2, nous avons vu que,

a(g)

E e A" étant donné, on connait alors £, € R" et —— € Q’, ce dernier ne

Q(S)

dépendant que des &,, pour tout p entier premier.

Réciproquement le couple (Em , a_(él) définit & modulo [[ Z*,.
(&) »
Pour a_ (ﬂ, - fﬁ) e Q" et tel que
q q q

0<a <q(lgi<gr),

pgced (ay,.,a,,q) = 1.
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On définit

T, 8) = {EeAaf) =a et Q©F) =4
ot &, |06 <P .

Alors on obtient

1 - —rd+rA
(To dd) = Hal{x R [x] < P72 PITup(25) = a7 P

De plus, on vérifie facilement que pour (a, q) # (a;,4;) on a

TofB) N T,y 0,(8) = @

et on a aussi
T(A) = U v T, q(A).
1<g<pA @

De ces trois derniéres relations résulte le calcul suivant

H(T(A)) = Z Z q" prd+ar
1<g<pA 0<a;<gq
pgcd(@y, ....,ar,q)=1
< Z z q—r p-rdtra

1<g<PA 0<a;<gq

—rd+ @+ 1A .
g pratrt by

le lemme 2.3 est donc démontré. ]

Nous pouvons désormais démontrer le principal résultat de ce para-
graphe 2.

THEOREME 2. Avec les notations précédentes et sous les hypothéses (H1)
et (H2), pour toute boite %€, pour tout P e P(HB) sous-ensemble non
rd

borné de R, pour tout veZ’, pour tout A tel que 0 < A < PR
-

il existe &, > 0 tel que

HE) V(<& —v>)dg = O(P" " %).

J(A/Q)’ —n(M(4))

Démonstration. Puisque T(A) < M(A), il suffit de montrer que

f | HE) | dg = O(P"~r4~5%).
(A/Q) —n(T(A))
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Choisissons A tel que 0 < A < , puis définissons une suite

r+
A0=A<A1<...<A1\,=r’f1
obtenue en fixant 6 > 0 tel que
(2.9) Q—r—1>2A"1
et
(2.10) %6 > (r+1)(A,.;—4A) pour O0<t<N-1.

Une telle suite existe puisque, en vertu de I'’hypothése (H2) on a
Q—r—1>0,cet o est dautant plus petit que A est lui-méme petit. Puis,
o étant choisi en fonction de l'inégalité (2.9), on peut définir (A, —A)

a partir de I'inégalité (2.10) et obtenir enfin la valeur de N. Il est important

de remarquer que & et N sont indépendants de P.

La raison du choix de Ay = vient du calcul suivant et du lemme 2.2.

r+1

rd

J lH(‘E_.)ldé <<J‘ Pn-ANQ+s dE_, & Pn—anLa
(A/Q)y" —n(T(AN)) (A/Q)"
Mais l'inégalité (2.9) donne

>1+ 29
r+ 1 (r+ 1A

donc

d A
d Q+e<n—rd—22Y 4 ¢
r+ 1 A

<n—rd— 20+ ¢

n_

d’ou l'inégalite

(2.11) | H(E) | d& « Prrd=25+

J(A/Q)r —n(T(AN))

Par ailleurs, on calcule ce qui suit, pour chaque t tel que 0 <t < N—1,
et en utilisant les lemmes 2.2 et 2.3
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J | H(E) | d€ « j prareqe
1(T(Ac+ 1)) = n(T(AL)) 1(T(Ae + 1))
« P—rd+(r+1)At+1+n—AtQ+s « Pn—rd+(r+l)(At+1—At)—At(Q""‘1)+8

Mais I'inégalité (2.10) aidant ainsi que l'inégalité (2.9) qui entraine

Q—r—1A, > (Q—-r—1DA > 25.

On obtient 'inégalité

(2.12) | H(E) | d8 < prri=gote

J‘T‘(T(Az + 1)) - N(T(At))

En réunissant l'inégalité (2.11) et les inégalités (2.12) dont le nombre N
ne dépend pas de P, il vient

3
J' |H(§) l di « Pn—rd—56+s
(A/Q)r —n(T(4))

0 , .
On peut enfin choisir € = 5 et 6, = & pour achever la démonstration du

théoreme 2. ]

Remarque. La démonstration du théoreme 2 est classique: voir, par
exemple, Birch lemme 4.4.

Remarque. Pour de grandes valeurs A, la restriction de la projection =«
a I'ensemble T(A) n’est pas injective.
Ceci ne presente aucun inconvénient pour la démonstration du théoréme 2,
puisque I'inégalité
W(T(4) > uln(T(A)]
est dans le bon sens.
Au contraire, au paragraphe 1, pour étudier l'intégrale J H(E)dE,

. . n(M(4))
il est indispensable d’avoir I'égalité

WM(@4)) = plr(M(A))]
qui est obtenue si la projection 7 est injective sur M(A) et donc pour

A < 3 en vertu du lemme 1.7.
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§ 3. INTEGRATION DE LA TRANSFORMEE DE GAUSS GLOBALE

La principale difficult¢ de ce paragraphe concerne (encore!) la place
infinie ou nous cherchons une bonne majoration de Pexpression | F*(_) |
pour &, grand. Cest 'objet des lemmes 3.1 et surtout 3.2 qui reprennent
originale méthode de Birch (lemma 4.1, 4.2 and corollary, 5.2).

La suite et la fin de ce paragraphe adaptent la démonstration du
théoréme 2.8 de Lachaud.

LEMME 3.1. Soit 0 < u < d, alors, sous Phypothése (H1), pour tout
(d+u) 1
axeR" telque |a| < P~ 2 etpour P > 2u, on a linégalité

(3.1) | S(o) | « P"*[Max(1, PYa))]" .
Démonstration. Considérons un élément o de R" qui soit dans le cas ii)

a a
de ’hypothése (H1) pour deux éléments distincts Let—2de Q.
4. 42

Autrement dit, pour ke {1,2} et ie {1, .., r} on a les relations habituelles

Ogaki<qk>

ngd(akl s vees Ay s qk) = 1 H
1 < qk < P )

|Qk@_ak|<Pﬁd+A-

i a a .. e
Puisque L et -2 sont distincts, il existe i {1, ..., r} tel que

qi q>
1 <|qyay; — qqay|
< qrlqro—ag |+ qi1q, 0 — ayl
<2P—'d+2A

Un tel résultat est manifestement faux sous les conditions suivantes
1

d
(3.2) A < 2 et P > 2d-24,

—-d

Revenons a la démonstration de I'inégalité (3.1); pour |a| < P™¢ cette

inégalité est triviale puisque
| S(ox) | <« P"*¢

est touyjours vrai.

TS
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Supposons donc désormais que

1
Pé<|a] P2ty
Posons | o | = P~4*" il vient donc

d—u

0<h<
< 2

Ainsi o est-il dans le cas 1) de I'hypothése (H1) pour A = h, a = 0
et ¢ = 1; de plus, pour

1 1
P > 2u > 2d-2h

les conditions (3.2) sont remplies et o n’est dans le cas ii) de 'hypothese (H1)
a

pour aucun élément non nul — de Q".
q

Soit maintenant 0 < < h et A, = h — n, alors a n’est plus dans le
cas ii) de I’hypothese (H1) pour A;, a = 0 et g = 1 et pas davantage pour

a . . . . A ¢
tout autre — e Q" — {0} car cela contredirait ce qui vient d’étre dit. Donc o
est dans le cas i) de I’hypothése (H1) pour A;; on en déduit l'inégalité
|S(G)] & Pn—A19+s « Pn—hQ+nQ+a

En utilisant P?|a| = P" et puisque la constante impliquée par le
symbole « « » ne dépend pas de 1 > 0, on conclut que

| (o) | < P""5(Per) ™

ce qui acheéve la démonstration de ce lemme. O

La transformée de Gauss locale associée a la place infinie de Q est,
selon les notations adoptées des I'introduction de ce travail.

F3E0) = J Poolx) exp(—2im <&, , f(x)>) dx
avec

Oy = e*lP.%*

LEMME 3.2. Avec les notations précédentes et sous I'hypothése (H1), on a

| F5(8x) | < P[Max(1, PUE,))] ™97,
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Démonstration.

A) Définissons la fonction

E. (x) = exp(—2in<&,, f(x)>);

alors nous avons I’égalité suivante

(p*E. )(0) = J @(x) exp(—2in <&, f(—x)>) dx = FE((—1)%,).
er
En utilisant 'associativité du produit de convolution, il vient

[(0 % 1pg) * E¢_1(0) = [0 * (1p4 * E;_)]1(0)

ainsi, en changeant £ en (—1)?€_, on obtient

F3Ew) = J 0= x) - (Lpg * B 1y ) (x)dx .

Par commodité décidons que 0 est paire, il en résulte 'inégalité

(3.3) | F%Co) | « Max | (1pg * E—1ya ) (x) |

x € Supp 0

B) Faisons maintenant le calcul suivant

(Lpg * E(— )2 ) (x) = J 1pg(x—t) exp(—2in<(—1)%,,, f(t)>)dt

Rn

"

) pa—xexp(—2in<&,, f(u)>)du (avec u= —t)

S e(—2in<t., f0>) du

= z‘"j ( exp(—2in<€,z"% f(v)>)dv (avec v = zu)
zP \ B —

7)

(3.4) =z" LZK L(y) + JC — JDII

Dans cette derniere ligne de calcul 'expression présente sous les signes J

est, bien évidemment, celle figurant sous le signe Jde la ligne précédente. De

|
i plus, les notations utilisées ont les sens suivants:
i

N
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¥ X. _

b(y) est la boite unité de centre y,

, , .
C et D sont des domaines voisins des bords de la boite zP <93—-I;>,

. o
destinés & nous rappeler que les ensembles zP (.@‘—F> et U b(y) ne sont
' yeK

pas tout a fait égaux.

X -
C) L’ordre de grandeur du bord de la boite zP <93——I;> est (zP)"" 1,

on en déduit I'inégalité

(3.5) | j — J | < (zP)"_?.

Considérons la fonction g(y) = exp(—2in ’<Emz_", f»>), on a alors

a%%()’) L= —2in<&,z7 Y %(y)>g(y) (1<j<n)
et donc

(3.6) | | grad g0y) | < | & | 27%(P2) "

Dans linégalité (3.6) la facteur (Pz)'~' provient de la majoration de |

of

5——~(y) qui est homogéne de degré (d— 1) selon les coordonnées de y lequel
Vi

appartient a zP <.%’——%> + b(0), ensemble lui-mémé inclus dans la boule de

centre 0 et de rayon yzP ou y est une constante qui tient compte du
domaine borné de R" dans lequel se trouve la boite # et donc de celui

tout aussi borné dans lequel se trouve # — —I;,,pour tout P > 1 et tout x. -

appartenant au support compact de la fonction 6.
Une conséquence de 1’1nega11te (3.6) est la majoration suivante

(3.7) I(J ) — exp(—2in<E,z % f()>)| < &0 |27t P71,
b(y) | .

Posons maintenant

SEez™? = ZCXP( 2m<§m —d f(y)>) ‘ IELEI U |

yeK -
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Alors Iégalité (3.4) et les inégalités (3.5) et (3.7) entrainent I'inégalité
(3.8) [ Zz(1lpg * E -y )(x) — SCoz™ | <« Pyt + &y | 271 PTH(zPY

dans laquelle I'expression (zP)" correspond au cardinal de I'ensemble K.

D) La somme S(§.z”% est une somme S(o) pour oo = £_z"¢ avec zP
) n X . n
au lieu de P et la boite 4 — P au lieu de la boite 4.

Les conditions d’application du lemme 3.1 deviennent alors, avec
0<u<d,

1
(3.9) 2P > 2u

et

1
| € [ 277 < (P2)7297Y,

cette seconde inégalité étant équivalente a I'inégalité

2 d+u

(3.10) z>|E, |duPi-u,

Le parametre u sera précisé ultérieurement, mais désormais la variable z
satisfera aux inégalités (3.9) et (3.10). En appliquant le lemme 3.1, on
obtient

| S(Ew0z™) | « (zP)""*[Max(l, (zP)|E,|z"4)]™®
(3.11) « (zPy"**[Max(1, PYE, )] ~®

Dans le cas ou P?| £, | < 1, Iinégalité que ce lemme propose se réduit
a la trivialité suivante:

(3.12) | F*( )| « P".

Nous pouvons donc supposer désormais que P?| &, | > 1, alors les
relations (3.8) et (3.11) impliquent la majoration

| (Lpp * E(— 1y ) (¥) | < 28 P""S(PUELD ™ + 271 PP H (14 PIE )
< 2P P"T(PUEL) T + 2 PP P E |

(3.13)

E) Choisissons enfin

(3.14) z = PTUPUE D
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1l faut alors vérifier I'inégalité (3.10), d’ou le calcul suivant:
2 dtu
P HPYELN @ = | & |d-u Piu,

2

(Plgo' 7% = (PUELD T .

et puisque nous avons la relation P E, | > 1,1l vient

1+ Q2>

d—u’

qui donne

2

<d — ——;
4 1+ Q

puisque d > 2etQ > 0,on a

0<d— < d

14+ Q

et nous pouvons donc poser, au mieux,

2
1+Q°

(3.15) u=d

Il reste a vérifier I'inégalité (3.9), qui, compte tenu de I'égalite (3.14)
devient

(PUE )12 > 2%,

ouis, en tenant compte de I’égalité (3.15)

1
PUE,| > 2a0+D~-2,

1
Mais pour 1 < P*| & | < 241+9-2, l'inégalité proposée dans ce lemme

revient au résultat trivial (3.12) quitte a augmenter la constante impliquée
dans le symbole « « ».
Ainsi pouvons-nous considérer que 1’égalité (3.14) est justifice.

F) Avec les inégalités (3.3) et (3.13) ainsi que I’égalité (3.14), on obtient

| F(E) | < PTHPUEL T2 PP7e + P P(PYE ) 170
« Pn(PdlE‘,OOD-*Q+a(Q+ 1) )
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En posant € au lieu de €(€2+ 1), on obtient
| F¥ (£,) | <« P"[Max(1, PYE ] “"°.
La démonstration de ce lemme est donc terminée. O

Remarque. Le résultat du lemme 3.2 est utile pour | &, | trés grand;
donc z peut-étre tres grand. C’est la raison pour laquelle 'ensemble

zP(%’-—i> = zP# — zx
P

ne peut étre assimilé a I'ensemble zP# car, bien que x soit dans le support
de 6 dont on a suffisamment dit qu’il peut €tre aussi petit qu'on le désire
mais fixé, zx peut etre grand.

Dans la démonstration de Birch cet inconvénient n’apparait pas car Birch
utilise ¢, = lp,z ce qui revient a poser 6 = 9J,, distribution de Dirac
en 0, dont le support est {0} ce qui entraine zx = 0 pour tout z.

Mais le choix de Birch, pour la fonction ¢,, ne conduit pas a une
fonction de Schwarz-Bruhat et ruine le paragraphe 1 de ce travail qui utilise
une formule de Poisson.

Puisque nous avons choisi le support de 6 comme un voisinage compact

fixé de 0, il nous faut utiliser la boite % —% au lieu de la boite 4,

ce qui exige dans ’hypothése (H1) I'indépendance du résultat obtenu pour %
appartenant a un domaine borné¢ de R".

Birch signale cette indépendance dans la remarque qui suit la démons-
tration du corollaire de son lemme 4.3: « Note that this corollary does not
depend on the box % being contained in & »; mais il ne s’en sert jamais
puisque, tout au long de ses démonstrations, il utilise la méme boite %
quitte, le moment venu, a la choisir convenablement!

Par commodité nous noterons A = R x A,, ou A, est le produit
restreint des Q, ou Z, pour toutes les places finies de Q. On désigne
habituellement A, comme 'ensemble des adeles finis.

La mesure de Haar considérée sur A’ est @ df, et sera notée dt,,
p

ainsi a-t-on d = df,, ® dg,.

LEMME 3.3. Avec les notations précédentes, lintégrale f Q) *dE, est
Ar

!
convergente si et seulement si o > r + 1.
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Démonstration. Puisque la fonction Q&) = [] Max(L,§,| ,) ne dépend pas
P

de £, mais seulement de &, I'intégrale etudice apparait dans de nombreux
calculs et sa convergence est un souci légitime.
Tout d’abord il vient, pour tout entier k > 0,

_ . kr
j dé,,-—-]—_[f Q= P
Max(1, |Ep|p) < P¥ 1sisr J |&ip|pS<pP*

Dong, pour k > 1, on obtient

J dE_,p — pkr _ p(k—l)r )
|&plp = P¥

I en résulte le calcul suivant qui n’est possible que pour o > r

J,[Max(l,ﬁ;,,\,,)]—“d&p——- J e, + Y J sl
Zp k=1 Eplp =P

QP
0

— 1 + Z p—ka[pkr_p(k—l)r]

k=1
14+ (1—p) Y p
k=1
— 1+ (1-p P
I —p

Puisque nous avons '¢galité

J # Q(ﬁ)*a daf = HJ‘ . [Max(laiéphy)]_adép
A P Qp

S
! faut étudier la convergence du produit infini de terme général (14 u,), avec
e 1= D77

Up =P 1—p

qul est équivalente a la convergence de la série de terme général u, ~p - *°
i'ou la condition classique

?

oa—r>1

qui achéve la démonstration. []

Nous pouvons maintenant démontrer le théoréme auquel ce paragraphe 3
est consacré.
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THEOREME 3. Sous les hypothéses (H1) et (H2), pour tout A > 0, il existe
O3 > 0 tel que, pour tout veZ’, on ait

f ( F¥E) Y (<& —v>)dg = O(P""""%).
Ar—M(A)

Démonstration. Définissons les quatre intégrales suivantes

(‘

P = | PG
J e >pdta
»
Jf= r|F}<(£f)ld§fa
J Ay
Ko = | IF5(E)1dE,,
LAP) = | FF (&) | dEy
J o@)>prA

Nous avons I'inégalité

(3.16) |J F*E) W (<&, —v>)dE | < J | F*(€) | dg
A" —M(A)

A" —M(A)

<1, (P)J;, + K, L{(P).
Il nous reste a majorer les quatre intégrales définies ci-dessus.

1) En utilisant le lemme 3.2, il vient

I,(P) « J P& |PY) ™7 e dE,,
|& | P9> P2

& Pn—Qd-i-sd [ F—Q+e Fr—l dr
Jrzp-dta

n
< Pn—Qd—H:d F—Z dl—* « Pn—rd~A.
FZP_d+A

(Y

Ce calcul n’est autre que celui dit des « surfaces de niveaux » dans R”
et puisque | &, | = Max|§,,, |, les surfaces de niveaux sont ici des hyper-
i

cubes. De plus I’hypothése (H2), a savoir Q > r + 1, est utilisée pour
obtenir les deux dernieres inégalités. Enfin on aura choisi € < Q — r — 1.

i
|
S |
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2) Avec les notations du paragraphe 1 de ce travail, il vient
Fm»=gf&%qud@ﬂ%»mm=g@@.
p
Donc, en utilisant le lemme 1.2, on obtient
Jy< f QE) e dt,
As

et cette derniere intégrale est convergente selon le lemme 3.3, 'hypothese (H2)
etlechoixdee < Q —r — 1.

3) On a
| F%(8e) | dEos + J
K, = J | F5%(Ex) | 48 ;
[l S P-4 &l > P4
or
J | F2%(50) | dE <<f Prde. <« prri
8| S P4 IINES b

:t, en reprenant le calcul concernant I (P) mais avec A = 0, on obtient
j | F%(Ea) [dE < P"77,
€] >P—d
K, « pr—r

4) Comme pour l'intégrale J ,, nous avons la majoration

Ly(P) « J Q)" e dg, .

0()>pPA
. : 1
Choisissons cette fois € < 2 (Q—r—1), alors on a L
L(P) « P‘EAJ‘ QE) T dE, « P,
Q&) > P4
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Cette derniere inégalité est une conséquence de la convergence de I'in-
tégrale

J o),

s

Enfin nous pouvons appliquer a I'inégalité (3.16) les quatre majorations
obtenues ci-dessus. Il vient

lj F*E) W (<& —v>)dE| « Prries,
A= M(A)

En posant 8; = €A on acheve cette démonstration. ]

§ 4. SERIE SINGULIERE ET INTEGRALE SINGULIERE

Une conséquence évidente du Théoréme 3 est que la transformée de Gauss
globale F* est intégrable sur A’. Ainsi sa transformée de Fourier, notée F*,
existe. Nous pouvons donc obtenir, grace aux Théoréemes 1, 2 et 3, le résultat
asymptotique suivant qui est essentiel dans ce travail.

ProPOSITION 4.1. Sous les hypotheses (HI1) et (H2) et en utilisant les
notations introduites dans les précédents paragraphes, il vient :

Pour toute boite HBe, pour tout PePHB), pour tout vel,
il existe 0 > 0 tel que

4.1) Y o) = F—v) + opP" i)
xeZn
Sf(x)=v

et le membre de gauche de cette égalité est égal au nombre de x e P# n 1"
et tels que f(x) = v.

Démonstration. On a déja expliqué, dans l'introduction de ce travail,
I’égalité essentielle

j HE) Y (<& —v>)dE = ) 0,(x).
(A/Q)

xeZn

f(x)=v
Compte tenu du sens donné au paragraphe 2 aux ensembles & et
P(A), le membre de droite de cette derniére égalité est exactement le nombre
de solutions entieres du systeme f(x) = v, situées dans la boite PZ.

b
i
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Enfin, pour A suffisamment petit et pour %€ &, on peut appliquer
simultanément les Théorémes 1, 2 et 3. En posant & = inf(3,, 3,, 83), on
obtient la formule asymptotique (4.1). ]

Il faut désormais étudier la fonction F* pour montrer qu’elle constitue
bien la partie principale de la formule asymptotique (4.1). Pour cela, les
hypothéses (H3) et (H4) seront utilisées.

Nous avons 'egalité

42 ) = FR (=W [IFR(=w):

le produit infini portant sur les places finies s’appelle classiquement « Série
singuliere », les lemmes 4.2, 3 et 4 lui sont consacres.

La quantité F ¥ (—v) s’appelle « Intégrale singuliere » et concerne la place
infinie. Son traitement est I'une des difficultés du travail de Birch et donc
aussi du présent travail; il occupe les lemmes 4.5 et 6.

Rappelons que, dans tout ce travail, on prend r < n et considérons
une application g: Z" — Z’, polynomiale a coefficients entiers.

Notons Dg(x), la matrice jacobienne de lapplication g en x e Z".

Disons pour simplifier que Dg(x) est d’ordre [ > 1 §’il existe un déter-
ninant extrait d’ordre r qui soit divisible par p'~! et non divisible par p'.

LEMME 4.2 (Hensel). Soit 1> 1 et x,€Z" tels que
1) g(xo) =0  (mod p*~1).
2) Dg(x,) est d’ordre .
tlors, pour tout entier p > 0, le systéme de congruences
21+

g(x) =0 (modp

dmet au moins p"~"™ solutions 'y, non congrues deux d deux (mod p'*")
i telles que Dg(y) soit d’ordre 1.

Démonstration. Procédons par récurrence sur lentier p; pour p = 0
- s’agit de ’hypothése.

Admettons le lemme vrai pour p et choisissons x e 7", tel que
:x) = 0 (mod p*~1*" et Dg(x) est d’ordre L

Alors en utilisant la formule de Taylor ou les % sont de «faux»

ienominateurs ! il vient

42) glx+u p'™) = g(x) + p'**Dg(x) (u)  (mod p2*2w).
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Avec a € Z', on peut écrire

(4.3) g(x) = ap* 1tm,

Compte tenu des congruences (4.2) et (4.3), nous aurons la congruence
(4.4) gx+up'™™ =0 (mod p* ¥
si et seulement si
ap it 4+ p'TH Dg(x) (w) =0 (mod p*'TH),
cest-a-dire

(4.5) ap'™!' + Dg(x)(u) =0 (mod p)

Mais la congruence (4.5) est un systéme linéaire en u = (uy, .., u,) a
coefficients dans Panneau Z/p' Z. La méthode usuelle de résolution d’un
systeme lin€aire est valable tant qu’il ne s’agit pas de diviser. Puisque
Dg(x) est d’ordre I, il existe un déterminant extrait d’ordre r égal a bp' ™1,
avec b # 0 (mod p). Notons ce déterminant det[a,, .., o], les a; désignant ses
colonnes.

A partir de ce déterminant, on définit classiquement des équations et
inconnues principales et on se ramene a la résolution usuelle du systéme
restreint (les n—r inconnues non principales étant devenues des parameétres)
et aux formules classiques de Cramer:

Pour chaque ie[1,n], on a

u; det [ay, .., o] = det [o;, .., —ap' "', ., o] (mod p'

qui devient

-1

u,bp p'"tdet[o,,.., —a,.,o] (modph
et enfin
u; b = det[ay,.., —a,.,0] (modp).
Il en résulte le calcul de u; (mod p) puisque b est inversible (mod p).
Comme il y avait (n—r) inconnues non principales, on obtient p”~" solutions

u = (uy, .., u,) distinctes (mod p); €crivons les solutions ainsi obtenues de la
congruence (4.4.)

y=x+up'’¥

N
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+
ces derniéres sont non congruentes deux a deux (mod p'trtl) et elles le sont
1+
encore moins si elles proviennent de deux x non congrus (mod p'™Y);

d’aprés Phypothése de récurrence, il y en a donc

pn-—r pp(n—r)' — ~p(p+ 1)(n—r) )

Enfin, on a y = x (mod p'**) et donc aussi (mod p'~1) et (mod ph,

ce qui entraine que Dg(y) est aussi d’ordre ‘
La demonstratmn par récurrence est donc complete / O

COROLLAIRE. Soit zeZ% une solution non singuliére du systeme
gx) = 0, alors il existe 1> 1, tel que pour tout entier pn =0, le
systéme de congruences g(x) = 0 (mod p* 1Y) admette au moins p Ik
solutions dans (Z/p* ' T*Z)". ' ‘

Démonstration. Puisque z est non singulier, il existe un déterminant

extrait de Dg(z)r d’ordre r et non nul.
Comme zeZ) et que les coefficients de g sont entiers, 11 existe

I>1letbeZy; = ,\{umtes p-adiques}, tels que Dg(z) = p L.
En réduisant modulo Z 2~ et puisque

Z,/p*'Z,) ~ (Z/p*'Z),

on trouve un élément x, € Z" tel que g(xo) = 0 (mod p*~1) et Dg(x,) est
dordre 1. 1l suffit alors d’appliquer le lemme 4.2 pour achever la démons-
‘ration de ce corollaire. - : O |

LeMME 4.3. Avec les notations précédentes, on a, pour tout veZ'.

Nombre de solutions de f (x) =v (mod )
k(n—r)

'4.6) ﬁ(—v) = lim
g k= 14
A
Démonstration. Puisque F* existe et est décomposable, la fonction locale
'* existe a fortiori et on a

>

2\
F3(=v)

Qr ‘l’p(<gp9 _’V>) [jQ" (pp(xp) wp(<&p9 f(vxp)l>)dxp‘] d&p
47) ' o - B

-

k— oo

= lim jla » . [jz ‘I’p(<E.vp’ fxp)— V>)dxp] dEa

S B
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Mais, pour |, |, < p*, nous avons obtenu, au lemme 1.1, ’égalité

p

J\Z" \l]p(<§p: f(xp)’—'v>)dxp = p_kn Z \ljp(<§p,f(u)—v>).

ue(Z/p* Z)»

Comme l'ensemble {§,€Q%| |§,], < p*} est un sous-groupe de QF,
dont T'application &, — ,(<&,, f(u)—v>) est un caractére, 'intégrale de ce
caractere sur ce sous-groupe est nulle si le caractére n’y est pas trivial
et vaut la mesure du sous-groupe: p*, si le caractére y est trivial. Or cette
trivialite est equivalente 4 la condition

(fw)—v)ep*Z,
ou encore:
u est solution du systéme de congruences f(u) = v (mod pY).

Tout ceci montre bien que 'égalité (4.7) n’est autre que I'égalité (4.6). [
Nous pouvons maintenant préciser la situation sur les places finies.

LEMME 4.4. Sous les hypotheéses (HI1), (H2) et (H3), pour tout veZ’,
on a

73—y > 0.

Remarque. Ce produit infini est indépendant de la variable P puisque
celle-ci n’affecte que la place infinie.

Démonstration. Puisque la fonction ﬁexiste et est décomposable, I’égalité
(4.2) montre que le produit infini €tudi¢ ici est convergent; il sera donc
non nul (c’est-a-dire > 0) si et seulement si tous ses facteurs sont non nuls.

Posant g = f — v, Phypothese (H3) donnant une solution non singuliere
dans tout Z7 au systeme g(x) = 0, nous pouvons appliquer le corollaire
du lemme 4.2:

Il existe [ > 1 tel que le systeme de congruences
(4.8) f(x)=v (modp?* 1*H
admette, pour tout entier p > 0, au moins p™~"* solutions. Donc, en notant
N ,(2I—14p) le nombre de solutions du systéme (4.8), il vient
N,Q2l—1+w) = p"=*,

N,@l—1+p) _ 1
p(21—1+p.) (n—r) p(Zl—l)(n—r)
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‘Enfin, quand j -+ 00, le membre de gauche de cette- derniére 1nega11te
admet une limite donnée par le lemme 4 3, on en déduit '

AN 1
"F;}‘(—v) = p(Zl—l) (n—r) >0

ce qui achéve cette démonstration. | ) O]

1l faut maintenant étudier l'intégrale singuliére F ¥ (—v). Afin que 'expose
soit complet, nous démontrons d’abord un lemme technique.
Notons, pour tout p € R": ' |

V(p) = {xeR"| f(x) = u}.

Remarque. V(u) peut étre vide.

LEMME 4.5. Soit X, un point non singulier de V(0), alors les trois
propositions suivantes sont vraies:

i) Il existe un voisinage ouvert U de x, et il existe o >0 tels
que

VwWnU+#Q<={lpnl<a}.

ii) Pour tout p, tel que |l <o, il existe une mesure positive dw,
sur V(W) nU ‘telle que, pour toute fonction o, continue et @ support
compact inclus dans U, on ait I'égalité '

49) . . J Q(x) dxy ... dx, = J [j edw,] du
. R" lul<a J V(AU -

#t, de plus, la fonction ut—»j, @dw, est continue sur [louvert
\ V(pnU |

el <ol
iii) Il existe une fonction @, continue et d support compact inclus dans
U, avec 0< ¢ <1 et telle quil existe B > 0 -et, pour tout .p, - avec

, o
< 7> linégalité

410 | J Cedw, =B o
V(RnU _ P T L mE ey T

Remarque. U peut étre aUSSIpetlt qu’on le veut. .
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Démonstration. Rappelons que r < n et considérons x,, un point non
singulier de 'ensemble V(0) = {x e R"| f(x) = 0}.
Supposons, quitte a réindexer les coordonnées x; de x, que

D(fy, - )

(4.11) D(xy, .., x,)

£0

(il s’agit, selon une notation usuelle, du déterminant extrait principal d’ordre r

-~

. . 0J; .
de la matrice jacobienne <—f—1> au point x).
X

Considérons I'application h de R" dans R" définie par
A(X 1 5 s Xpy Xy q s oeer Xp)
= (yl :fl(x)> ) yr:f;‘(x)> Vrds1=Xp515 00 yn:Xn) 5

la matrice jacobienne de 'application h au point x, est

M | 0
A =
N | I,

. ) L, of.
ou [I,_, est la matrice identit¢ d’ordre (n—r) et M = (afj>1 I
X <isr
Vo1gjsr
puisque
D(fi, - /o
DetAzDethﬁL_i#O’
D(xq, .., X,)

le point x4 est un point non singulier de 'application .

Par le théoréme des fonctions implicites, il existe un voisinage ouvert U
de x, dans R" et un voisinage ouvert W de h(x,) dans R" tels que
I'application
(4.12) UL w
soit un isomorphisme analytique.

On peut réduire W a un hypercube de centre h(x,), ainsi il existe
a > 0 tel que

W= {teR'|(I<i<r) |t <o et (F+1<j<n)|t; — xo;] < o}
Soit alors p € R” et soit aussi

14

p

W n (ul LR Hr) x R""

= {teR"|(I<i<r)t; = et (@+IKj<n)|t; — xo,;] < a}.

|
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On a clairement
(W, # Q= {lpl <of
et par la bijection (4.12) on obtient

W, # Q= {VwnU# Q};

la proposition i) est donc démontrée.

L’application h définit, par restriction, une carte locale
Vi AU 5> W,

si et seulement si |p| < o; on peut alors utiliser A~' pour définir sur
V() n U la mesure image de la mesure de Lebesgue sur W ; si J désigne
le jacobien, il s’agit de la mesure

dwu = I J(h_l) (“1 9 wery ur’ yr+1a o sy yn) | dyr+1 dy,,

définie, par exemple, pour les fonctions continues a support compact inclus
dans V(n) n U; rappelons enfin I'égalité

J(l’l_l) — D(fla"'a f;') o
D(x, ..., X,)

Soit maintenant une application ¢:R"” — R, continue et a support
compact inclus dans 'ouvert U; par la formule usuelle de changement de
variable (représente ici par I'isomorphisme analytique (4.12)) dans les inté-
grales multiples, on obtient le calcul suivant

Iad
J\ (p(x1>"'> xn)dxl dxn = (poh_l(yl’.__’ yn)IJ(h-l) (yla"'a yn)' dyl dyn
Rn J R

m rm

= [ o@ch ' [JhY)|dy, 1. dyldy, ... dy,
Jlul<a J W
r r

= [ edw,] du .
J lpl<e J V(U

L'égalite (4.9) est donc démontrée. De plus il est clair que la fonction

W J Pdw,
VimnU

est continue pour | p| < a. La proposition ii) est donc vraie.
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Choisissons maintenant une fonction ¢, continue a support compact
inclus dans U = h~ (W) et obéissant aux deux conditions suivantes:

0<o<1
et
o '({1}) o ki (W),

avec

o o
W= {teR(<i<lul <5 et (HISj<n)]y —xo 0 <5 )

Une telle fonction ¢ existe puisque U est diffeomorphe a W qui est un
hypercube de R"”, de méme que W’ dont la fermeture topologique est
incluse dans W.

o
Prenons alors pe R", avec | p| < —; on a donc
2

Wi=WnW,#Q

Y

et le calcul suivant

J odw, = @oh™ | J(h™) | dy, sy . dy,
VimnU J W
Z , I'](h_l)|dyr+1"‘ dyn>

J W

H

u

ou cette derniére inégalité résulte de la relation
©oh Y W) = {1}.
Continuons le calcul:

J NI [y, - dy,
w

K

= J o I J(h_l) (ulv weos s Vet 15 00 yn) | dyr+l dyn
lyj=x0,jlS7
rt1<j<n)

Or la fonction |J(h™1')| est continue, positive et non nulle sur W;
elle admet donc sur la fermeture de W’, qui est un compact inclus dans W,
une borne inférieure m > 0. i‘
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o
Ainsi il vient, pour tout p tel que | p| < 5:

a n—r
V(WU 2

ce qui achéve la démonstration de la proposition iii) de ce lemme, en prenant

]

Remarque. On peut montrer, mais c’est inutile pour démontrer le theo-
réme 4, que la mesure dw, est indépendante de la carte locale choisie sur
V(p) au voisinage du point non singulier x,. De plus les mesures ainsi
obtenues se recollent sur Pouvert 6, des points non singuliers de V/(p).

Enfin, pour toute fonction continue a support compact inclus dans u 6,
. i

(qui n’est autre que l'ouvert de R" constitué des points non singuliers de
f) on dispose de la formule

[ MR

(sur ce sujet voir aussi le paragraphe 5.F).
Le lemme technique (4.5) nous permet d’aborder la démonstration princi-
pale concernant I'intégrale singuliére.

LEMME 4.6. Sous les hypothéses (HI), (H2) et (H4), il existe une boite
BeS etil existe y >0 tels que, pour tout veZ', et pour tout P
supérieur d une valeur P(v) dépendant seulement de v, on ait linégalité

J/V},O(—v) >y prord,

Démonstration. La fonction F¥ existe puisque F* e L,(R"). Il en résulte
le calcul suivant ou I'on pose x = Pt puis u = & P

AN
Fol=v) = Lr U n(Poo(X)\boo(<ioo,f(X)>)dX]\l!oo(<§oo, —Vv>)dg,,

= P" Jvkr |:Jkn (poo(Pt)\poo(<E.‘oo Pd’ f(t)>)dt:| \lloo(<§oo g —V>)d§oo

= P"_”’j [j P (PO (<, f(t)——vP_d>)dti|du.
R L Re
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Il faut donc étudier la fonction 7 (P, v) définie par I’égalité
T2 (=) = PP v);
on ne peut lui appliquer le théoréme de Fubini car la fonction
u— Y(<u, f(t)—vP~?>) n’est généralement pas intégrable!

Aussi utilise-t-on une suite de fonctions positives a support compact:
(9n),., Qui, au sens des distributions, tend faiblement vers 9, la distribution
de Dirac en 0. On sait que l'action de ces distributions porte sur les
fonctions continues a support compact.

On sait aussi que la suite (gA,,)nEN tend faiblement, toujours au sens des
distributions, vers 1.

Ainsi il vient I'égalité

J(P,v) = lim (P, V)

n—oo

avece

T WP, V) = J [J Qo (POV (< u, f(t)—vP"d>)dt:| gu(w)du .

Nous pouvons cette fois appliquer le Théoreme de Fubini, il suffit
que ¢, soit intégrable ce qui s’obtient sans peine en prenant g, de classe
C® par exemple. On a donc

T (P, V) = J [ j GV (<u, f(t)—vP“">)duj| o (POt .

La formule d’inversion de Fourier est valable pour la fonction g,, il
en résulte I'égalite

(4.13) T (P, v) = J @ o(Pt)g (VP4 — f(t))dt .

Un premier avantage de I'égalité¢ (4.13) est que l'intégrale porte sur des
fonctions positives. Nous pouvons donc, en vue d’une minoration, utiliser
toute fonction ¢ telle que, pour tout t € R”, on ait la double inégalité

D’aprés ’hypothése (H4), le systtme f = 0 admet une solution x, non
singuliére dans R”. Choisissons une boite # e % telle que x, soit proche
(autant qu’on le voudra puisque & est dense dans 'ensemble des boites %
de R") du barycentre de %.
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Selon le lemme 4.5 i), il existe un voisinage ouvert U de x,, aussi
petit qu'on le veut et donc inclus dans la boite £, de méme barycentre
que 4 et de dimensions toutes moities de celles de #.

Puisque nous avons par définition @, = 0 * lpg, il est clair que la
fonction @ (Pt) prend la valeur 1 sur la boite %,. A4 fortiori, pour tout
te U et pour tout P, on a la relation

P,(Pt) = 1.

La fonction ¢ citée dans la proposition iii) du lemme 4.5 est donc
telle que pour tout t € R", on ait la double inégalite

0 < 0t) < @u(P1);

Pégalité (4.13) conduit alors a l'inégalite

T (P, V) = J o(t)g,(VP ™= f(1))dt .

Rn
En appliquant le lemme 4.5 ii), il existe « > 0 tel que

r e

T (P, V) = o()g (VP = f (t))dwp] dp
J |u|<e LJ V(mnU

> cpdwp} gu(VP ™I —pydp .

J lul<e LJ vimnu

Soit alors la valeur P(v) telle que, pour tout P > P(v), on ait I'inégalite
o
VP < =
2

nous n’utiliserons pour terminer cette démonstration que des valeurs de P
supérieures a la valeur P(v).

Puisque, selon le lemme 4.5 1ii), la fonction p — J‘ ¢@dw, est continue
VipnU

pour | pu| < o et qu'elle est clairement a support compact inclus dans cet
ouvert de R", on obtient, quand n — + o0, l'inégalité

7(P’V)>J. (.Pdva—d‘

V(VP~9)nU

Enfin, le lemme 4.5 1) dit que cette derniere intégrale est supérieure a
une constante f > 0 qui ne dépend ni de P > P(v), ni méme de v. Nous
2vons donc obtenu la minoration

et | F e
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F2(—v) > p P

valable pour tout ve Z" et tout P > P(v). J

Remarque. Le lemme 4.6, suffisant pour ce travail, dit que lintégrale
singuliére est, lorsque P — + 00, au moins d’ordre P"~". On a bien slr envie
d’obtenir, si possible, une partie principale précise et compte tenu de la
démonstration ci-dessus le plus vraisemblable serait ’équivalence suivante

(4.14) 17\00(—\/) ~ [ J ' dwo} prrd;
V(0)nB

il s’agit d’un résultat nettement plus difficile que le lemme 4.6 pour lequel
il faudrait commencer par donner un sens précis au coefficient de P"~ "
(@ ce sujet voir le paragraphe 5.F). Birch, dans son travail, démontre cette

equivalence en utilisant son hypothese de codimension élevée de la variété

des points singuliers de f. Cette hypothese de géométrie algébrique entraine
les hypotheses (H1) et (H2) et c’est tout son mérite. Mais je ne sais pas
si les seules hypotheses (H1), (H2) et (H4) suffisent pour obtenir I’équi-
valence (4.14).

Il ne reste plus qu’a conclure.

THEOREME 4. Sous les hypothéses (H1), (H2), (H3) et (H4) et avec les
notations précédentes, il existe une boite H e telle que, pour tout
ve Z’ et pour tout P > P(v) on ait l'inégalité

1/7>(~v) > prord

Démonstration. Utiliser les lemmes 4.4 et 4.6. ]

THEOREME PRINCIPAL. Soit [ = (fy, .., f,), r formes de degré d en n
variables, a coefficients entiers et répondant aux hypotheéses (HI1), (H2),
(H3) pour un élément v de Z' et (H4).

Alors le systeme [ = v admet une infinité de solutions entiéres.

Démonstration. En raison du Théoreme 4, la formule asymptotique de la
Proposition 4.1 est effective lorsque P — 4+ o0 avec Pe P(#) dou la
conclusion. ]

Remarque. Un corollaire évident du Théoréme Principal est que le
systtme homogene f = 0 admet au moins une solution non triviale, c’est-
a-dire qu'un systeme f obéissant aux hypotheses (H1) et (H2) observe le
Principe de Hasse fin.
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§ 5. EXEMPLES D’APPLICATIONS

A) SUr LES HYPOTHESES (H1) ET (H2)

La justification de I'hypothése (H1) provient de I'emploi de I'inégalité
de Weyl et de ses généralisations pour majorer des sommes trigonomeétriques
du type S(®). Il semble que, pour de telles sommes, ce soit la seule méthode
efficace actuellement connue. L’adjectif « efficace » étant un exemple d’eu-
phémisme. ‘

Le but de ce travail n’étant pas de recopier Birch ou Davenport, mieux
valait se situer en aval, c’est-a-dire partir de I'’hypothése (H1), quitte a
indiquer ici la méthode qui y conduit, sans démonstrations mais avec des
références bibliographiques qui sont les suivantes:

Birch, « Forms in many variables », paragraphe 2, lemmes 2.1 a 2.5.

Davenport, « Cubic forms in 32 variables », paragraphes 3 et 4.
« Cubic forms in 16 variables », paragraphes 4 et 5.
« Analytic Methods... », paragraphes 3 et 13.

Pour le reste, il faut d’abord remarquer que la démonstration de I'inéga-
litt de Weyl utilise une succession de différences finies (autant que le degré d
des formes f;) portant sur les polynomes présents dans lexposant de e
(les polynomes f; et g en ce qui nous concerne) d’ou un résultat indépendant
du polynébme g puisque son degré est inférieur strictement a 4. Ainsi la
disparition du polynome g dans I’hypothese (H1), qui ne présente aucun
inconvénient pour les paragraphes 1 a 4 du présent travail, n’a pas d’intérét
tant que la méthode de Weyl demeurera la seule qui puisse justifier
I'hypothése (H1).

L’inégalité de Weyl une fois obtenue, on utilise un résultat de géométrie
des nombres (Birch lemme 2.3, Davenport « 32 variables » lemme (3.3)
«16 variables » lemme 8) avant d’aboutir a un lemme d trois possibilités
(Birch lemme 2.5, Davenport « Analytic methods », lemme 32, Schmidt
« Simultaneous rational zeros... », lemme 3).

La premiére possibilit¢é est une bonne majoration du module de S(x)
du type P""* ou k > 0 est un parameétre.

La seconde possibilité est une bonne approximation rationnelle de g,

précisement celle de I'hypothese (H1) ii), associée a4 un second paramétre
A> 0.

La troisieme possibilité est la mauvaise: celle qui ne garantit aucune des
deux précédentes. Toutefois elle exprime une condition (compliquée) qui ne
concerne pas o mais seulement les formes f;.
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Ainsi, chez tous les auteurs la régle est-elle la méme: attribuer aux
formes f; une propriété T, plus ou moins laide, qui soit suffisante pour
exclure la troisieme possibilité et donc garantir ’hypothése (H1) qui n’est
autre que 'union des deux premiéres possibilités (poser k=AQ)!

Mais ce n’est pas suffisant car pour exploiter convenablement, par la
méthode du cercle de Hardy et Littlewood, ’hypothése (H1) il faut disposer
d’'un bon accord entre les paramétres k et A, plus précisément de I’hypo-
these (H2):

K Q 1
K = >r+ 1.

Ainsi équipé le systeme f peut affronter la « machinerie » de la méthode
du cercle dont le présent travail donne un exposé adélique. On obtient
ainst la formule asymptotique de la Proposition 4.1 (Birch lemme 5.5,
Davenport « 16 variables » lemme 16, etc.).

Encore doit-on s’assurer que le terme principal de cette formule asympto-
tique n’est pas nul. Cest la raison des hypothéses (H3) et (H4). Hélas
la vérification de (H3) est un probleme difficile et tout simplement non résolu
deés qu’on quitte les cas particuliers.

En résumé, pour obtenir des exemples d’application, il faut atteindre deux
objectifs:

1° Trouver une proprieté T du systeme f qui implique (H1) et
aussi (H2).

2° Vérifier (H3) et éventuellement (H4).

B) SUR LE TRAVAIL DE BIRCH

Ce dernier consacre son paragraphe 3 a la définition d’une propriété T
en termes de géométrie algebrique.

Soit T'application polynomiale f:C" —» C" (on prend ici le corps C
parce qu’il est algébriquement clos). Birch note

V* = {xe C"|rang <% (x)) <r}

la variété des points singuliers de f (rappel: r = n).
Il obtient ainsi la propriété T suivante:

n— dim V* > 271 d—1)Q

il

i
i

N
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qui implique 'hypothése (H1). En ajoutant hypothése (H2) on obtient donc
la condition suffisante de Birch:

(5.1) codim V* > r(r+1)(d—1)2" 1.

Un cas intéressant (Birch, paragraphe 7, Théoréme 2) est r = 1, car
alors I’égalité d’Euler pour les polyndomes homogenes montre que V* est
Iensemble des points singuliers de V(0) = {x e C"| f(x) = 0} (c’est faux en
général pour r > 2 ou V* est assez difficile a connaitre). On obtient dans
ce cas

(5.2) codim V* > (d—1)2%.

Bien entendu la vérification des conditions (5.1) ou (5.2) dans des cas
généraux est difficile. Birch ne propose d’ailleurs aucun exemple précis et ne
sattaque pas davantage aux hypothéses (H3) et (H4), I'avant-dernicre ¢tant
inaccessible dans un cadre aussi général.

C) Sur LEs HYPOTHESES (H3) ET (H4)

Voici un contre-exemple simple qui permet de comprendre pourquoi
'hypothése (H4) ne peut étre a Pimage de I'hypothése (H3), a savoir

(H'4) 1l existe un point non singulier de V(v) = {x e R"| f(x) = v} .

Considérons la forme f(x) = x? + ... + x7, alors nous avons r = I,
d=2 et V* = {0}. Ainsi, d’aprés le travail de Birch et l'inégalite (5.2)
ci-dessus, les hypotheses (H1) et (H2), sont vraies pour n > 4.

Soit ve N* d’aprés le Théoreme de Lagrange, la variéte reelle V(v)
admet des solutions entiéres pour n > 4. Ainsi le systtme f = v possede
des solutions dans Z}, pour tout p, évidemment non singulieres puisque
v # 0 et ’hypothése (H3) est vérifice.

Puisque I’hypothese (H,) est clairement vraie, si elle était la bonne
hypothése a retenir, on obtiendrait une infinité de solutions enti€res pour
tout n > 4, ce qui est faux puisque V(v) est bornée dans R”.

Drailleurs, la méme impossibilité concerne toutes les variétés bornées
de R": il faut des points a linfini réels pour espérer une infinité de
solutions entieres, c’est-a-dire un point réel non nul dans V(0) et non dans
V(v).

Comme pour espérer des solutions entiéres il faut des solutions dans
4’ pour tout p, on comprend mieux les hypothéses (H3) et (H4) tout en
notant qu’elles demandent chacune Dexistence de points non singuliers ce
qui est plus exigeant que la simple nécessité.
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D) SUR LES TRAVAUX DE DAVENPORT

Il est le grand spécialiste de la méthode du cercle, il en vit toutes
les subtilités ! et le travail de Birch généralise son « Cubic forms in
32 variables ».

Le but poursuivi est le

Théoréme. Toute forme cubique ayant au moins N variables et a coeffi-
cients entiers représente z€ro.

D’ou trois articles de Davenport pour successivement N = 32, 29 et
enfin 16.

Il faut d’abord remarquer qu’il s’agit d’'une démonstration par ’absurde.
En effet, la formule asymptotique que fournit la méthode du cercle est
manifestement fausse pour beaucoup de formes (par exemple les formes
dégénérées qui sont rationnellement équivalentes a des formes comprenant
moins de variables: le terme principal est en P""¢ avec n, nombre de
variables!). Il convient donc de les exclure ce qui peut se faire pour d = 3
(cette chance ne se poursuit pas pour d > 3) en supposant seulement que les
formes étudiées ne représentent pas zéro.

S’il est possible d’appliquer la méthode du cercle, on obtiendra une
evidente contradiction (une infinité de solutions entieres pour des formes
qui ne représentent pas zéro!) et donc le théoréme recherché.

L’hypothése (H4) ne colite pas cher justement parce que la forme cubique
C(x) ne représente pas zéro (Davenport « 32 variables », lemme 6.1).

L’hypothése (H3) est connue de Davenport qui rappelle, dans le para-
graphe 2 de son « 32 variables », sa démonstration de I’existence pour toute
forme cubique ayant au moins 10 variables, d’'une solution non singuliére
dans Q,, pour tout p. (Ce résultat a ¢te cite au paragraphe A de I'Intro-
duction).

Toute I’habileté réside donc dans la définition d’'une bonne propriété T
qui entraine les hypotheses (H1) et (H2).

Dans « 32 variables », au lemme 4.2, Davenport propose, pour une forme
cubique C(x) a coefficients entiers, la propriété T, suivante:

« Ne pas représenter zéro et ne pas étre équivalente (par GL,(Q)) a
une forme du type aqgug + C,(uy, ..., u,), en (m+1) variables uy, u,, ..., u,,,

k
ou m est le plus petit entier supérieur ou é€gal a n — 4Q (rappel: Q:X) ».

Cest loin d’étre beau, mais cela fonctionne, apres de nombreux efforts
que Davenport améliore dans son « 29 variables » sans toutefois modifier
la propriété T .
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Enfin dans larticle « 16 variables », Davenport propose, au lemme 13,
la propriéte T,:

« Ne pas représenter zéro et ne pas étre équivalente (par GL,(Q)) a une
forme du type C,(ty, ., u,_,) + Co(v;1, .., v,) pour 1 <r < n—1»

Non seulement T, est plus simple que T; mais la démonstration associée
simplifie nettement les précédentes. Enfin si C est rationnellement équivalente
a Cyluy,..,u,_,) + Cy(vy,..,0,), les sommes S(a) construites sur C sont le
produit des mémes sommes construites sur C; et C, et on obtient un
rajsonnement rapide par itération qui conduit au pire sur les formes dia-
gonales connues depuis longtemps: un bien joli travail de précision!

Malheureusement aucune généralisation pour d > 4 ne parait possible
(dixit Davenport).

Enfin Davenport fait remarquer que pour démontrer le cas N = 17,
sa démonstration est encore plus simple et qu’il suffit de la propriété T:

« Ne pas representer zero »

(cf. Davenport, « Analytic Methods... », Lemme 36).

E) SUR LES TRAVAUX DE W. M. SCHMIDT

Dans son article « Simultaneous rational zeros of quadratic forms »,
W.M. Schmidt considére le systtme f = O pour r formes quadratiques a
coefficients entiers.

Soit Q(f) = {uef 1 + v+ oS (s o 1) € Q7 — {O}}

le pinceau rationnel engendré par f.

Soit C(f) = {l“llfl + .t u'rfr I (“’15 s eny p’r) € Cr - {O}}
le pinceau complexe engendré par f.

Dans son lemme 6, pour obtenir les hypothéses (H1) et (H2), Schmidt
propose la propriété T, :

« Pour tout g € Q(f), on a rang g > 2r? + 3r ».

Il consacre a I'hypothése (H3) son paragraphe 5 ou il utilise les théo-

remes 2 et 6 de son article « Simultaneous p-adic zeros of quadratic forms ».
Il parvient ainsi a la propriété T,:

« Pour tout g € Q(f), on arang g > 4r® + 12 »

qui implique donc les hypothéses (H3), (H2) et (H1).
Enfin il montre que la propriété T;:

« Pour tout g € C(f), on arang g > 4r> + 4r »

implique la propriété T,. Il en déduit son principal résultat:

{(Hy) et T3} = {le systéme f représente zéro} .
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F) SUR LA SERIE SINGULIERE F

Dans le présent travail, la priorité est revenue a F*, selon la notation
d’Igusa. Mais, chez Igusa (Forms of higher degree) ou chez Lachaud

(chapitre 1), la préférence est donnée a la fonction
F(v) = FR(—v),
appelée série singuliere globale et qui peut étre définie directement.

Remarquons que si F est intégrable et continue alors on a F* = F,
d’apres la formule d’inversion de Fourier.

Les considerations du lemme 4.5 i) et ii) sont valables dans Q, puisque
le théoreme des fonctions implicites est vrai pour des fonctions analytiques
sur tout corps valué complet.

Ainsi obtient-on localement, c’est-a-dire dans R et dans chaque Q,,
la definition d’une mesure dw,, , s us sur Touvert des points non
singuliers de V' (n) ou V ,(n) (dont les définitions sont évidentes!), telle que
pour toute fonction ¢ a support compact inclus dans l'ouvert des points
non singuliers du systéme f dans R" ou dans Q7, on ait les formules
de désintégration de mesures suivantes:

f o(x)dx = j [J‘@dww,u} du
[ ooy =[] [oam,]an.
Q~ Q)

Soit maintenant @, une fonction de Schwarz <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>