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202 H. GROSS AND U.-M. KUNZI

Remark 30. By Theorem 28 the isometry type of a definite space with
admissible topology is characterized by the sequence ({e;»);.x Where (e;);n
is a maximal orthogonal family in €. Conversely, for each (o;) € kN there is a
definite space € with L(€) = L(€) admitting a maximal orthogonal family
(e)ieny With (e;> = a; (ieN) provided that

(A) &;: = oo; eI satisfies the (type-) condition expressed in (8)

(B) The form ( , ) defined on F: = k(e)ien by <e;,¢;> = 0 (i#j),
(e;> = a; (ieN) 1s definite.

These two conditions are implemented by many fields. In order to satisfy
(A) one may, e.g. pick fields of generalized formal power series that are
complete under a valuation ¢ with group I' a prescribed Hahn product
[30, p. 31] with sufficiently many factors not 2-divisible, eg. I' = ZM
ordered antilexicographically. Let k be any field with (A) and teI/2l;
set &, = {spane;| oo; + 2I' = t}. By (A) dim &, < oo; furthermore

¥ =@ {§ltel)2l}.

In order to check whether the form ¢ , ) satisfies the triangle inequality on &
it suffices to verify said inequality on each &,. A. Fassler has given a handy
criterium for ¢ , > to be definite if Hahnproducts I" are used, as indicated,
to construct k with (A), [6, Lemma 15, 16].

VIII. APPENDIX: EXTENDING THE MAIN THEOREM TO THE CLASS &
OF NORM-TOPOLOGICAL SPACES

The arguments applied to the spaces in the class £ can be extended to
a larger class &. First we have (cf. Definition 15):

Definition 31. An infinite dimensional anisotropic quadratic space
(€; <, >) over a *-valued field (k, *, @, I') is called norm-topological if the
sets W1 = {xe €| @{x) > vy} form a O-neighbourhood basis of a vector
space topology on €. Let & be the class of all norm-topological spaces.

Definite spaces are norm-topological, obviously.

A proper subgroup A of I' is convex (or isolated) if “0 < x < y & yeA”
implies “x € A”. If the subgroup A = T is convex then the factor group I'/A
is ordered by setting vy + A <6 4+ A iff y < 8 or y — 6 € A; furthermore,
@a:k = T/A U {0} defined by @,(x) = @(x) + A is a valuation (a “coarser
valuation”) which yields the same topology on k as o. A
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In order to make the mechanism of types work in the context of norm-
topological spaces, ie., in order to salvage the statement of Corollary 26
in the new context, the concept of type has to be coarsened as follows.
For y e I' we introduce

(12) A(y): = {8el|VneN:n|d| < |y}
and
(13) O(y): = N A(y+29)

oell

Ify # 0 then A(y) is the largest convex subgroup of I' not containing y ([21]).

Remark 32. The group defined in (13) for y = @{e), e € €, represents yet
another possibility to introduce a “type” for the vectors in a definite space.
The fundamental property expressed in Lemma 25 can be replaced and
reproved (along the same lines), cf. [21]:

(14) If U is a convex subgroup in I' and (e¢;)n, (f)n are two maximal
orthogonal families in a norm-topological space that satisfies (iii) in
Theorem 28 then

card {ie I | ©(p<e;> = U} = card {j e N| O(p(f;») = U}.
# #

One has the following analogue of Lemma 14:

Lemma 33. ([21]). Let (€;<, >;,I,*) be a norm-topological space
and  ©(2) = 0 (cf. Remark 35 below). Then there is a valuation &:k
> T U{w} coarser than ¢ such that the following holds: Either
€, ¢, >;,T,% is a definite space, in the sense of Definition 15, or else
there are no analytically nilpotent elements ack (ie, for no o # 0

shall we have lim o" = 0) and then the following weakened versions of the
N

Statements in Lemma 14 hold :
(1)) Pp<x+1) > min {P,<{x), a<v>}
1) ¢x) < Py & (x, 9> = 0= §Ax) = §ox+1)
(i) §<x, ) > min {PaCx), Paln>}
)

(V) 204<x, 1) = Pax) + §4<0)
where A = O(¢<x)) and A = OH{(x)) N OG(nD).
The inequalities in Lemma 33 suffice to salvage all results proved

prev1ously on definite spaces; in particular we have the following strengthen-
__ing of Theorem 28 (cf. Remark 35 below):
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THEOREM 34 [21]. Let € be a norm-topological space in the sense of
Definition 31 and assume @(2) = 0. Then the statements (i), (ii), (iii)
in Theorem 28 are equivalent.

Remark 35. In Definition 15, Lemma 33 and in Theorem 34 we stipulated
that ¢(2) = O for the valuation ¢ of the base field. However, it is neither
necessary to assume this nor that char k be different from two. As technica-
lities increase if 2 is not a unit for ¢ the general case has been banned
from this elementary survey. Refer to [21].

IX. APPENDIX: ORTHOMODULAR SPACES OVER ORDERED FIELDS

A Baer order of a *-field k is a subset Il = S: = {aek|o = o*} with
lell, 0¢II, T + IT < II, Yo # 0:alla* < I, —IT U IT = S\{0}. ([14]).
The map ar— a*a = : || o | has the properties of a norm and defines a
topology on k; if * is continuous then k is a topological *-field [14,
Theorem 4.1, p. 231]. The theory of positive definite orthomodular spaces
over archimedean ordered fields is settled in [9]: There are but the classical
Hilbert spaces over R, C, H. If the order is non-archimedean we shall assume
that

(15) the subgroup S generated by all a*o~ ! is bounded.

There is [14, Sec. 4.5, p. 234] a valuation on k that induces the norm-
topology. We remark that the boundness condition on S is always satisfied
for the usual orderings on commutative fields, for Prestel’s semi-orderings
and for all *-ordered fields that are known hitherto.

A family (e,),; of vectors in a positive definite space (€; { , )) over an
ordered *-field k is said to satisfy the type condition (cf. Definition 21)
iff for all (o), € k' the following holds: if ({oye,>he; is bounded then
(oyey)ie; converges to 0 e €.

With this version of type condition we have

THEOREM 36. Let (€;<{ , >) be a positive definite space over a non-
archimedean ordered *-field that satisfies (15). Then the statements (i), (ii),
(iii) in Theorem 28 are equivalent.
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