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VII. THE MAIN THEOREM

We are now able to characterize the definite spaces whose topology is
admissible (Def. 1). Refer to Definition 21 for “type condition™.

THEOREM 28 [20]. Let € be a definite space in the sense of Definition 15.
The following conditions are equivalent

(i) L(€) = LyE) (cf. (1), (2), (3)
(i) L(€) = L, (€) (“the topology is admissible”, Def. 1)

(iii) k is complete and & is the completion of a N,-dimensional space
spanned by an orthogonal basis that satisfies the type condition.

Proof. (i) = (ii) holds trivially because Ly = L, , = L. by continuity of
the form; (ii) = (iii) was carried out in Chapter V. Just as in [18] we can
establish (iii) = (i). Let U € L (). Pick a maximal orthogonal family (v;),; in U
and extend it to a maximal orthogonal family (v),,, in € For xe€

we have by Lemma 27 x = ¥ + ¥” where ¥ = Z(z, p,> {p;> v, and
I

¥ =) {(x,0;) (0;> 'n;. Now ¥ eIl = 1. All that remains to be shown is
J

e U+, Now U* is closed so it suffices to show that v,e U+ for all
ieJ. To this end pick ue U and decompose u = u’ + u” (analogous to the
decomposition of x): " = u —u' el — U = U. Now <{u”,v;,> = 0 for all
ielsou” = 0 since (v;),,; 18 @ maximal orthogonal family. From

0 =u":=) <un) <o) 'y,
J

we obtain {u, v;> = 0 (ieJ). As u € i was arbitrary this says that v, e U* (ieJ).
Q.E.D.

Remark 29. Let the definite space € be the completion of § = k(e;);cn» (€:)n
an orthogonal family (that does not necessarily satisfy the type condition).
If k is complete then € is isometric to the k-space & of all sequences
(A)ien € KN such that li;n(2(pki+(p<ei>) = oo and equipped with the form

(), (1)) = 3 Mpde;). Indeed, the set & is a definite k-space and the map
N

Y:(h) > Y he; is a well defined isometry & — W(F) = €. By the “infinite
Pythagoras” we have ker ¥ = 0; on the other hand, Lemma 16 shows that
¥ is also surjective.

Thus all definite spaces that carry an admissible topology are (by
Theorem 28) of the kind invented by Keller.
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Remark 30. By Theorem 28 the isometry type of a definite space with
admissible topology is characterized by the sequence ({e;»);.x Where (e;);n
is a maximal orthogonal family in €. Conversely, for each (o;) € kN there is a
definite space € with L(€) = L(€) admitting a maximal orthogonal family
(e)ieny With (e;> = a; (ieN) provided that

(A) &;: = oo; eI satisfies the (type-) condition expressed in (8)

(B) The form ( , ) defined on F: = k(e)ien by <e;,¢;> = 0 (i#j),
(e;> = a; (ieN) 1s definite.

These two conditions are implemented by many fields. In order to satisfy
(A) one may, e.g. pick fields of generalized formal power series that are
complete under a valuation ¢ with group I' a prescribed Hahn product
[30, p. 31] with sufficiently many factors not 2-divisible, eg. I' = ZM
ordered antilexicographically. Let k be any field with (A) and teI/2l;
set &, = {spane;| oo; + 2I' = t}. By (A) dim &, < oo; furthermore

¥ =@ {§ltel)2l}.

In order to check whether the form ¢ , ) satisfies the triangle inequality on &
it suffices to verify said inequality on each &,. A. Fassler has given a handy
criterium for ¢ , > to be definite if Hahnproducts I" are used, as indicated,
to construct k with (A), [6, Lemma 15, 16].

VIII. APPENDIX: EXTENDING THE MAIN THEOREM TO THE CLASS &
OF NORM-TOPOLOGICAL SPACES

The arguments applied to the spaces in the class £ can be extended to
a larger class &. First we have (cf. Definition 15):

Definition 31. An infinite dimensional anisotropic quadratic space
(€; <, >) over a *-valued field (k, *, @, I') is called norm-topological if the
sets W1 = {xe €| @{x) > vy} form a O-neighbourhood basis of a vector
space topology on €. Let & be the class of all norm-topological spaces.

Definite spaces are norm-topological, obviously.

A proper subgroup A of I' is convex (or isolated) if “0 < x < y & yeA”
implies “x € A”. If the subgroup A = T is convex then the factor group I'/A
is ordered by setting vy + A <6 4+ A iff y < 8 or y — 6 € A; furthermore,
@a:k = T/A U {0} defined by @,(x) = @(x) + A is a valuation (a “coarser
valuation”) which yields the same topology on k as o. A
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