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We are now able to characterize the definite spaces whose topology is

admissible (Def. 1). Refer to Definition 21 for "type condition".

Theorem 28 [20]. Let & be a definite space in the sense of Definition 15.

The following conditions are equivalent

(i) LM Lsm (cf. (1), (2), (3))

(ii) Lc((£) Lx x((£) ("the topology is admissible", Def 1

(iii) k is complete and (£ is the completion of a tridimensional space

spanned by an orthogonal basis that satisfies the type condition.

Proof, (i) => (ii) holds trivially because Ls L±± Ç Lc by continuity of
the form; (ii) => (iii) was carried out in Chapter V. Just as in [18] we can

establish (iii) => (i). Let U e Lc((£). Pick a maximal orthogonal family (r>f)ie/ in U

and extend it to a maximal orthogonal family (x>i)/uj in (£. For x e (£

we have by Lemma 27 x x' + x" where x' ^ <at, t>£> <t)£>-1x>£ and
i

f £ Dj> <t>£)~ 1t)i. Now x' ell U. All that remains to be shown is
j

i" e U1. Now U1 is closed so it suffices to show that of e U1 for all
ieJ. To this end pick u e U and decompose u u' 4- u" (analogous to the

decomposition of *): u" u-u'gU-H U. Now <u", pf) 0 for all
ie I so u" 0 since (uf)ie/ is a maximal orthogonal family. From

o U": X <u. t»i> <D;>_1Di
J

we obtain <u, vt} 0 (ieJ). AsueH was arbitrary this says that vt e U1 (ieJ).

Q.E.D.

Remark 29. Let the definite space (£ be the completion of g /c(ef)feN, (cf)N

an orthogonal family (that does not necessarily satisfy the type condition).
If k is complete then (£ is isometric to the k-space § of all sequences
WieN G kN such that lim(2(pX,i + cp<ei>) oo and equipped with the form

N

(ff (ff,-)) — E Indeed, the set § is a definite /c-space and the map
N

^: (h) E ^iei is a wel1 defined isometry g -> ¥(§) c (£. By the "infinite
Pythagoras" we have ker 0; on the other hand, Lemma 16 shows that
T is also surjective.

Thus all definite spaces that carry an admissible topology are (by
Theorem 28) of the kind invented by Keller.
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Remark 30. By Theorem 28 the isometry type of a definite space with
admissible topology is characterized by the sequence (<eI))i6N where (et)i6N

is a maximal orthogonal family in (£. Conversely, for each (a,-) g /cn there is a

definite space (£ with Lc((£) Ls((£) admitting a maximal orthogonal family
(ei)ien with <ei> — ai (*£N) provided that

(A) ^ : (pa; g T satisfies the (type-) condition expressed in (8)

(B) The form < defined on g: k(ti)ieN by <ci,eJ-> — 0 (iVj),
<et) — a,- (j'gN) is definite.

These two conditions are implemented by many fields. In order to satisfy

(A) one may, e.g. pick fields of generalized formal power series that are

complete under a valuation cp with group T a prescribed Hahn product

[30, p. 31] with sufficiently many factors not 2-divisible, e.g. T Z(N)

ordered antilexicographically. Let k be any field with (A) and t g T/2T ;

set gf {span | cpat- + 2T t}. By (A) dim g, < °o ; furthermore

g 01 {g, U e T/2T}.

In order to check whether the form < satisfies the triangle inequality on g

it suffices to verify said inequality on each g,. A. Fässler has given a handy

critérium for < to be definite if Hahnproducts T are used, as indicated,

to construct k with (A), [6, Lemma 15, 16].

VIII. Appendix: Extending the Main Theorem to the class S

OF NORM-TOPOLOGICAL SPACES

The arguments applied to the spaces in the class Q) can be extended to

a larger class S. First we have (cf. Definition 15):

Definition 31. An infinite dimensional anisotropic quadratic space

((£; < » over a *-valued field (k, *, cp, T) is called norm-topological if the

sets Uy: {ï g (£ I cp<ï) > y} form a 0-neighbourhood basis of a vector

space topology on (£. Let S be the class of all norm-topological spaces.

Definite spaces are norm-topological, obviously.
A proper subgroup A of T is convex (or isolated) if "0 ^ x ^ y & y g à"

implies "x g A". If the subgroup A <= T is convex then the factor group T/A
is ordered by setting y + A^Ô + Aiffy<8ory — ôgA; furthermore,

cpA: k r/A u {oo} defined by cpA(a) cp(a) + A is a valuation (a "coarser

valuation") which yields the same topology on k as cp.
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