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198 H. GROSS AND U.-M. KUNZI

straight lines in E. A family (e),; of vectors in € is said to satisfy the
type-condition iff for all (o), € k! the following holds: if (@<oye, ) is
bounded (below) then (x¢,),; converges to 0 € E.

COROLLARY 22. Let € be as in Theorem 17. T'J2I" is infinite. Each
orthogonal family in € satisfies the type-condition, equivalently, T'/2T
satisfies (8 ) below. O

CoOROLLARY 23. Let & be as in Theorem 17. Then k is complete.

Proof. By Corollary 19 it suffices to show that a sequence (a;);n
with limit 0 € k is summable. Let (¢;),.y be maximal orthogonal in € with
(p<{e;))en bounded below. If (A)n € kN has (@(X)),ey bounded below then
(A:#))ien 18 summable and by continuity of { , > we obtain

< Z rie;, Z ;) = Z Aie;) .
N N N

Thus, all families (A;{e;>);cx With bounded (A,),.5 are summable.

Pick a strictly monotonic sequence (n,),.x € NN with u, = 0 and for all
ieN" and all m > n;: ¢o(a,) > @{e;), and set 4;: = > {o;|n; <j < myyq)
The family (4,),.x 1s summable if and only if (v;),.,y Summable and, if the
sums exist, these must be equal. If we set X;: = A4,{e¢;>” ! then, by what
we have shown, the family of the A; = A;{e;> is summable. ]

COROLLARY 24. Let & be as in Theorem 17. Then € is complete.

Proof. Let (x,),.n be a Cauchy sequence (Corollary 19). For each fixed
ne € the map x+ (y, ) is uniformly continuous. Hence by Cor. 23 the
map f:ylim {y, ;> is well-defined. As it is a continuous linear map,

1

its kernel is a closed hyper-plane and so (L(€) = L, (€)) there is ae€
such that f(y) = (%, a). Let N = N be infinite. Because lim ¢{y, a—x,> = ©
for all y e € it follows by systematic use of the Cauchy-Schwarz inequality
that {@{a—zx;>|ie N} is not bounded above by any yeI. Therefore
(x;);cn CONverges to a.

VI. SUFFICIENT CONDITIONS IN & FOR L, = L, |

VI.1. AssumpTiONS. In this chapter (€;( , >) is a definite space In
the sense of Definition 15. Of the base field k we shall furthermore assume j



< 199
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(cf. Corolllaries 22 and 23)
['/2I" contains a sequence (§; 4 2I'),.n such that each

(8) system of representatives (§;+27,),n that is bounded below tends
to oo.

(9) k is complete.

Thus, by (8), I'/2I' will be infinite and the topology on k will satisfy
the first countability axiom. There are many fields that satisfy (8) and (9):
See Remark 30.

The results in the next sections will culminate in Theorem 28 which
characterizes certain definite spaces that are orthomodular.

VI.2. CounNTING TYPES. Let € be the completion of an N,-dimensional
space ¥ which is spanned by an orthogonal basis 4 = (e,),.n that satisfies
the type condition (Def. 21). & is dense in € so §* = (0) and hence # is
maximal. By Lemma 16 we have therefore x = ) <x, ¢;> (¢;> 'e; for all

N

1eC.
We now introduce the function v which counts types on %. Let
vil[2I' > N:t>card {i e N | T o 0{¢;> = t} (cf. Def. 21). We have

LemMa 25. If fy,..,f. are pairwise orthogonal (non zero) vectors in
€ with Too@lf;) =tel/2I forall 1 <i<m then m < V).

Proof. We shall replace the f; by suitable multiples and assume that
oCfp =yelforall l <i<m LetJ: = {ieN|Toope> = t}. We have
i, =1 + f; where

f; = ;(fja e;) <ei>_1eia f}'3 = Z ir e e ley.

N\J

Since Lemma 14 (ii) generalizes to finite as well as to infinite sums we find
oCf;> = min {@{(f;, ;> <e;> " ted} # @<f;» (because types are different). By

ieN\J

Lemma 14 (ii) furthermore ¢{(f;> < O<F0, o<T> < @(f7> and we must
have equality in at least one instance. Therefore

(10) o = ofp =v<ofd, 1<j<m
Now, for i # j we find

2055, 15 = 205 =17, ;17> = min {20, 11>, 20<i7, i), 20477, 17>}
> min {@<T> + o<, <Fi) + olf), olff> + oD} > 2y
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so that
(11) ofi,f >y, 1<i#j<m

Thus f', .., ., are an almost orthogonal system in the v(t)-dimensional
space k(e);;. Assume by way of contradiction that the f; were linearly

dependent, ) wf; = 0 and not all p; = 0. Thus, for each
1

re{l,..m},0 =Y wdi, o

and so for each r

o<T + o) = o(— ; nicts, F.0) = m?in {ow) + o<f5 1o}
jFTr jFr
Therefore, by (10) and (11), ¢(p,) > min {@(u;} which tells that there is no
j#r
smallest @(p,) at all, a contradiction. Therefore, {1, ..,f, are linearly
independent and so m < v(t), QED. By Lemma 27 we thus obtain

COROLLARY 26. The function v that counts types on an orthogonal
basis of € is the same on all bases.

VI.3. THE TYPE CONDITION. Let € be the completion of a X,-dimensional
space & which 1s spanned by an orthogonal basis (¢;);,.n that satisfies the
type condition (Def. 21). , '

LEMMA 27. Let % = (), be a maximal orthogonal family in C.
Then % satisfies the type condition and x =) <{x,u; {w)> 'u; for all

N
x € €. In particular, the span of % is dense in €.

Proof. The assertion on the type condition follows directly from
Lemma 25. Let then z € €.

O<x u) Quy My = 2043, u) — olu) = @)
+ o<y — oy = @<x) .

Thus the family of vectors <z, u;> <u;,> "y, is bounded; in fact, it is a null

sequence as 4 satisfies the type condition, hence it is summable as €

is complete. Put p: = > <z u) {u;> " 'u;. We have {u;,p—x) = {u;,n)
N

—{u;,xy = 0,50 x —1pn =0 as # is a maximal orthogonal family. [J
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