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straight lines in E. A family (el)le/ of vectors in (£ is said to satisfy the

type-condition iff for all (oLx)leI e k1 the following holds: if ((p<alel))lg/ is

bounded (below) then (oqe^j converges to 0 g E.

Corollary 22. Let (£ be as in Theorem 17. r/2r is infinite. Each

orthogonal family in (£ satisfies the type-condition, equivalently, r/2r
satisfies (8) below.

Corollary 23. Let Œ be as in Theorem 17. Then k is complete.

Proof. By Corollary 19 it suffices to show that a sequence (oc£)£6N

with limit 0 e k is summable. Let (ef)ieN be maximal orthogonal in (£ with
((P<ei))ieN bounded below. If e kN has (cp(^/))ieN bounded below then

0Ce;)ien is summable and by continuity of < we obtain

NN N

Thus, all families (?q<e£»ieN with bounded (ki)ieN are summable.

Pick a strictly monotonie sequence (nf)feN e NN with u0 0 and for all

i e N+ and all m > ny cp(am) > cp<ef), and set Ay £ {atj | nt ^ j < ni+l}.
The family (Af)ieN is summable if and only if (af)fgN summable and, if the

sums exist, these must be equal. If we set i then, by what

we have shown, the family of the A{ — Xftfy is summable.

Corollary 24. Let Œ be as in Theorem 17. Then (£ is complete.

Proof. Let (xfim be a Cauchy sequence (Corollary 19). For each fixed

v) e (£ the map x i— <t), x} is uniformly continuous. Hence by Cor. 23 the

map / : i) lim <t), xt) is well-defined. As it is a continuous linear map,
i

its kernel is a closed hyper-plane and so (Lc((£) L± ±((£)) there is a e &

such that /(r>) (x, a). Let N S N be infinite. Because lim cp<t), a — xty oo

for all t) e (£ it follows by systematic use of the Cauchy-Schwarz inequality
that {cp<a — xt) | i e N} is not bounded above by any y e T. Therefore

(*i)/en converges to a.

VI. Sufficient conditions in Q) for Lc L1±

VI. 1. Assumptions. In this chapter ((£;<,» is a definite space in

the sense of Definition 15. Of the base field k we shall furthermore assume
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(cf. Corolllaries 22 and 23)

T/2T contains a sequence + 2r)ieN such that each

(8) system of representatives (£; + 2yf)f6N that is bounded below tends

to 00.

(9) k is complete.

Thus, by (8), T/2T will be infinite and the topology on k will satisfy
the first countability axiom. There are many fields that satisfy (8) and (9):
See Remark 30.

The results in the next sections will culminate in Theorem 28 which
characterizes certain definite spaces that are orthomodular.

VI.2. Counting types. Let (£ be the completion of an X0-dimensional
space 5 which is spanned by an orthogonal basis & (e^eN that satisfies
the type condition (Def. 21). gf is dense in (£ so g1 (0) and hence is

maximal. By Lemma 16 we have therefore x ^ <x? et> <el->_1el- for all
N

ieG.
We now introduce the function v which counts types on Let

v: T/2r N : 11—> card {i e N | T ° cp<ei> t} (cf. Def. 21). We have

Lemma 25. If fm are pairwise orthogonal (non zero) vectors in
(E with T o (p<f;> t e T/2T for all 1 ^ i ^ m then m ^ v(£).

Proof We shall replace the by suitable multiples and assume that
9(f)) — y £ r for all 1 ^ i ^ m. Let J: {/ e N | T ° cp<(et-) t}. We have
fj f + f j where

fj: Z <fj> O f'j: z <fi,ei)j N\J

Since Lemma 14 (ii) generalizes to finite as well as to infinite sums we find
<p<fj) min {cp<<fy, et-> <e£->~ 1e/)} # (p<L) (because types are different). By

ieN\J
Lemma 14 (ii) furthermore cp<fJ> s: cp<f}>, cp<fJ.) < tp<fy> and we must
have equality in at least one instance. Therefore

(10) cp<f.) cp<f}> y < cp<f;>, 1 ^
Now, for i =£ j we find

2(P<fJ-» f}) 2cp<f(—f^ min{2cp<fi,f;>,2cp<f;',îJ.),2cp<f;',f;>}
> min {<p<f4> + <p<f;>, q><ff"> + <P<fy>, q><f,"> + cp<f)')} > 2y
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so that

C11) <P<fî,f}> >Y, 1

Thus fi,..., f'm are an almost orthogonal system in the v(t)-dimensional
space /c(et)ieJ. Assume by way of contradiction that the f} were linearly

m

dependent, £ Ihf ; 0 and not all 0. Thus, for each
i

r e {1,..., m}, 0 X M-»<f î, fr>

and so for each r

(p<fr) + <P(Hr) <P(— Z fr» ^ ^n {(p(ty) + <P<f}, f^)}
j+r j+r

Therefore, by (10) and (11), cp(pr) > min (cp(p7)} which tells that there is no
jîr

smallest cp(pr) at all, a contradiction. Therefore, fi,..., fi, are linearly
independent and so m ^ v(t), QED. By Lemma 27 we thus obtain

Corollary 26. The function v that counts types on an orthogonal
basis of (E is the same on all bases.

VI.3. The type condition. Let (E be the completion of a K0-dimensional

space 3 which is spanned by an orthogonal basis (cf)ieN that satisfies the

type condition (Def. 21).

Lemma 27. Let & (uf)i6N be a maximal orthogonal family in (E.

Then & satisfies the type condition and x £ (x, u,-> 1ui for all
n

x e (E. In particular, the span of & is dense in (E.

Proof The assertion on the type condition follows directly from

Lemma 25. Let then x e (E.

cp«l, Uf> <U[)_ 1Uj) 2(P<3E, Ui> - (p<Uj> ^ (P<ï>

+ 9<u;> - 9<"i> <P<*> •

Thus the family of vectors (x,u;><Uj)_1U( is bounded; in fact, it is a null

sequence as $ satisfies the type condition, hence it is summable as (E

is complete. Put p: £ <s, uf> <ut->_ "V-. We have — x)
N

— <ut-, x) 0, so x — x) 0 as $ is a maximal orthogonal family.
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