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IV.3. The class Fè of definite spaces. Positive definite forms over
ordered fields satisfy the triangle inequality as well as the Cauchy-Schwarz

inequality. We therefore set down

Definition 15. A definite space is a nondegenerate hermitean space

((£; < over an involutorial division ring (k, *), char k ^ 2, that is equipped
with a ^valuation cp that has (p(2) 0 (cf. Remark 35) and that satisfies

one (and hence all) of the four statements in Lemma 14. A definite

space (£ will always be considered as a topological vector space, the topology
being given by the zero-neighbourhood basis UY : {p g (£ | (p<t)> > y}, y g T.

If Wie/ is any family over vectors in (£ such that the net of all finite
("partial") sums et has a limit at in (£ then we write at £ el and call

16/

(ei)i/ summable.

Lemma 16. Let (et)le/ be an orthogonal family in the definite space

((£ ; < and g span. For each at in the topological closure of g
we have x£ <*, ev> <cv>~1el.

16/

Proof. Let be the set of all finite subsets of I. For V e & we set

xv: Y <at, et> <el)~1el. We have to prove that for each yeT there is
leV

U e 0* such that cp<at — atF) ^ s for all V with U c= V e 0>. Now there is

peg with cp(at — x)} > s. Pick U e 0* with x) e span {et 11 e U}. If U c= V e

then at — xv 1 xv — v), so by "Pythagoras" (Lemma 14 (ii)) we obtain

8 ^ (p<at-t}> min{cp<at-%>, cp<atF-p>} ^ <p<at-%>.

V. Necessary conditions in @ for Lc L11

The principal result of this section is

Theorem 17 ([20]). Let (£ be an infinite dimensional definite space

carrying an admissible topology i.e., the topology mentioned in Definition 15 is

admissible in the sense of Definition 1 ; let furthermore (et)le/ be an orthogonal

family in (£ such that (<p<el))l6/ has a lower bound in T. Then

Y exists.
16/

Proof. Let g: span {<et>~ 1el - <e0)_1e0|i el}. We first wish to

show that <e0)_1e0 is not an element of the topological closure g. Indeed,



f
ORTHOMODULAR QUADRATIC SPACES 197

if y is a lower bound of (cp<el»l6l and if we let x: — £ ^iKei) lei
leU

— <e0)-1e0) be a typical vector of 5 some finite nonvoid subset of

7\{0}) then we get the inequalities

cp<3E-<e0)"1Co> 9<(-1-Z^i)<eo>_leo + Z ^i<ei> ~lei>
U

min {2cp(-l-^i)-(P<eo>. 2cp(A.l)-cp<el>)}
IeU U

^ 2 min {<p(-1 - <P(^i)} - Y < <P(~ 1) ~ Y ~ Y •

IeU U

Thus 3 # (£.

Since g11 % we have g1 ^ (0). Pick a non-zero ïeg1; so

(i, et> <el>~'t <ae, e0> <e0>_1. If we assume that (et)le/ is a maximal

orthogonal family then by Lc Ls and Lemma 16 x £ fx, et> <el)_1el
i

<*, e0> <e0>_
1 X ei anc* thus £ et g 51- ^ (ei)ie/ is not maximal then we

i i
write it as a difference of two maximal bounded families : Complete the given

family to a maximal orthogonal bounded family (et)le7, J I, by Zorn's
Lemma. For i e J let oq: 1 g k when i e I and oq: 2 when i g J\L
The two families (2el)le^/, (^iei)iej are bounded maximal families to which the

previous result may be applied. We get £ et £ (2et) — £ oqet g (S.
' le/ le/ le/

Corollary 18. If (S and (el)l6f are as in Theorem 17 then

(ei)ie/ converges to 0 g (£.

Corollary 19. If (£ is as in Theorem 17 then the cofinality type
of T is co0. In particular, the topology on (£ satisfies the first
countability axiom.

Corollary 20. If (£ is as in Theorem 17 then all orthogonal families
of non-zero vectors are countable.

Proof. Let (tx)leI be such a family; by multiplying by a suitable
scalar, if necessary, we may assume (cp<^i»ie/ to be bounded below. Since
£ et exists by Theorem 17, the sets Iy {i g 11 cp<et> ^ y} are finite for all

Y e T. Let (y^eN be confinai in T. Then I u {Iy. | i g N} is countable.

Definition 21. The elements of the group T/2T are called types. Let
1 T T - T/2T be the canonical projection. T o <p is constant on the square

J classes of k (elements of k/k2) and T o <p o < is constant on the "punctured"
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straight lines in E. A family (el)le/ of vectors in (£ is said to satisfy the

type-condition iff for all (oLx)leI e k1 the following holds: if ((p<alel))lg/ is

bounded (below) then (oqe^j converges to 0 g E.

Corollary 22. Let (£ be as in Theorem 17. r/2r is infinite. Each

orthogonal family in (£ satisfies the type-condition, equivalently, r/2r
satisfies (8) below.

Corollary 23. Let Œ be as in Theorem 17. Then k is complete.

Proof. By Corollary 19 it suffices to show that a sequence (oc£)£6N

with limit 0 e k is summable. Let (ef)ieN be maximal orthogonal in (£ with
((P<ei))ieN bounded below. If e kN has (cp(^/))ieN bounded below then

0Ce;)ien is summable and by continuity of < we obtain

NN N

Thus, all families (?q<e£»ieN with bounded (ki)ieN are summable.

Pick a strictly monotonie sequence (nf)feN e NN with u0 0 and for all

i e N+ and all m > ny cp(am) > cp<ef), and set Ay £ {atj | nt ^ j < ni+l}.
The family (Af)ieN is summable if and only if (af)fgN summable and, if the

sums exist, these must be equal. If we set i then, by what

we have shown, the family of the A{ — Xftfy is summable.

Corollary 24. Let Œ be as in Theorem 17. Then (£ is complete.

Proof. Let (xfim be a Cauchy sequence (Corollary 19). For each fixed

v) e (£ the map x i— <t), x} is uniformly continuous. Hence by Cor. 23 the

map / : i) lim <t), xt) is well-defined. As it is a continuous linear map,
i

its kernel is a closed hyper-plane and so (Lc((£) L± ±((£)) there is a e &

such that /(r>) (x, a). Let N S N be infinite. Because lim cp<t), a — xty oo

for all t) e (£ it follows by systematic use of the Cauchy-Schwarz inequality
that {cp<a — xt) | i e N} is not bounded above by any y e T. Therefore

(*i)/en converges to a.

VI. Sufficient conditions in Q) for Lc L1±

VI. 1. Assumptions. In this chapter ((£;<,» is a definite space in

the sense of Definition 15. Of the base field k we shall furthermore assume
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