Zeitschrift: L'Enseignement Mathématique Herausgeber: Commission Internationale de l'Enseignement Mathématique **Band:** 31 (1985) Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE Artikel: ON A CLASS OF ORTHOMODULAR QUADRATIC SPACES **Autor:** Gross, Herbert / Künzi, Urs-Martin **Kapitel:** V. Necessary conditions in D for $L_c = L_{\text{bot bot}}$ **DOI:** https://doi.org/10.5169/seals-54565 ## Nutzungsbedingungen Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise. ## Conditions d'utilisation L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u> #### Terms of use The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice. **Download PDF: 23.05.2025** ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch IV.3. The class \mathcal{D} of definite spaces. Positive definite forms over ordered fields satisfy the triangle inequality as well as the Cauchy-Schwarz inequality. We therefore set down Definition 15. A definite space is a nondegenerate hermitean space $(\mathfrak{E}; \langle , \rangle)$ over an involutorial division ring (k, *), char $k \neq 2$, that is equipped with a *-valuation φ that has $\varphi(2) = 0$ (cf. Remark 35) and that satisfies one (and hence all) of the four statements in Lemma 14. A definite space \mathfrak{E} will always be considered as a topological vector space, the topology being given by the zero-neighbourhood basis $\mathfrak{U}_{\gamma} := \{ \mathfrak{y} \in \mathfrak{E} \mid \varphi(\mathfrak{y}) \geq \gamma \}, \gamma \in \Gamma$. If $(e_1)_{1 \in I}$ is any family over vectors in \mathfrak{E} such that the net of all *finite* ("partial") sums $\sum e_1$ has a limit \mathfrak{x} in \mathfrak{E} then we write $\mathfrak{x} = \sum_{1 \in I} e_1$ and call $(e_1)_{1 \in I}$ summable. Lemma 16. Let $(e_t)_{t\in I}$ be an orthogonal family in the definite space $(\mathfrak{E};\langle\ ,\ \rangle)$ and \mathfrak{F} its span. For each \mathfrak{x} in the topological closure of \mathfrak{F} we have $\mathfrak{x}=\sum_{l\in I}\langle\mathfrak{x},\,e_l\rangle\,\langle e_l\rangle^{-1}e_l$. *Proof.* Let \mathscr{P} be the set of all finite subsets of I. For $V \in \mathscr{P}$ we set $\mathfrak{x}_V := \sum_{\mathfrak{t} \in V} \langle \mathfrak{x}, \mathfrak{e}_{\mathfrak{t}} \rangle \langle \mathfrak{e}_{\mathfrak{t}} \rangle^{-1} \mathfrak{e}_{\mathfrak{t}}$. We have to prove that for each $\gamma \in \Gamma$ there is $U \in \mathscr{P}$ such that $\phi(\mathfrak{x} - \mathfrak{x}_V) \geq \varepsilon$ for all V with $U \subset V \in \mathscr{P}$. Now there is $\mathfrak{y} \in \mathfrak{F}$ with $\phi(\mathfrak{x} - \mathfrak{y}) \geq \varepsilon$. Pick $U \in \mathscr{P}$ with $\mathfrak{y} \in \operatorname{span} \{\mathfrak{e}_{\mathfrak{t}} \mid \mathfrak{t} \in U\}$. If $U \subset V \in \mathscr{P}$ then $\mathfrak{x} - \mathfrak{x}_V \perp \mathfrak{x}_V - \mathfrak{y}$, so by "Pythagoras" (Lemma 14 (ii)) we obtain $\varepsilon \leq \phi(\mathfrak{x} - \mathfrak{y}) = \min\{\phi(\mathfrak{x} - \mathfrak{x}_V), \phi(\mathfrak{x}_V - \mathfrak{y})\} \leq \phi(\mathfrak{x} - \mathfrak{x}_V)$. # V. Necessary conditions in ${\mathscr D}$ for $L_{ m c}=L_{\perp\perp}$ The principal result of this section is Theorem 17 ([20]). Let $\mathfrak E$ be an infinite dimensional definite space carrying an admissible topology i.e., the topology mentioned in Definition 15 is admissible in the sense of Definition 1; let furthermore $(\mathfrak e_l)_{l\in I}$ be an orthogonal family in $\mathfrak E$ such that $(\phi\langle\mathfrak e_l\rangle)_{l\in I}$ has a lower bound in Γ . Then $\sum_{l\in I} \mathfrak e_l$ exists. *Proof.* Let \mathfrak{F} : = span $\{\langle e_1 \rangle^{-1} e_1 - \langle e_0 \rangle^{-1} e_0 \mid \iota \in I\}$. We first wish to show that $\langle e_0 \rangle^{-1} e_0$ is not an element of the topological closure $\overline{\mathfrak{F}}$. Indeed, if γ is a lower bound of $(\varphi \langle e_1 \rangle)_{1 \in I}$ and if we let $\mathfrak{x} := \sum_{1 \in U} \lambda_1 (\langle e_1 \rangle^{-1} e_1 - \langle e_0 \rangle^{-1} e_0)$ be a typical vector of \mathfrak{F} (*U* some finite nonvoid subset of $I \setminus \{0\}$) then we get the inequalities $$\begin{split} \phi \langle \mathfrak{x} - \langle \mathfrak{e}_0 \rangle^{-1} \mathfrak{e}_0 \rangle &= \phi \langle (-1 - \sum_U \lambda_{\mathbf{l}}) \langle \mathfrak{e}_0 \rangle^{-1} \mathfrak{e}_0 + \sum_l \lambda_{\mathbf{l}} \langle \mathfrak{e}_{\mathbf{l}} \rangle^{-1} \mathfrak{e}_{\mathbf{l}} \rangle \\ &= \min_{\mathbf{l} \in U} \left\{ 2 \phi (-1 - \sum_U \lambda_{\mathbf{l}}) - \phi \langle \mathfrak{e}_0 \rangle, \, 2 \phi(\lambda_{\mathbf{l}}) - \phi \langle \mathfrak{e}_{\mathbf{l}} \rangle) \right\} \\ &\leq 2 \min_{\mathbf{l} \in U} \left\{ \phi (-1 - \sum_U \lambda_{\mathbf{l}}), \, \phi(\lambda_{\mathbf{l}}) \right\} - \gamma \leqslant \phi (-1) - \gamma = -\gamma \,. \end{split}$$ Thus $\overline{\mathfrak{F}} \neq \mathfrak{E}$. Since $\mathfrak{F}^{\perp\perp} = \overline{\mathfrak{F}}$ we have $\mathfrak{F}^{\perp} \neq (0)$. Pick a non-zero $\mathfrak{x} \in \mathfrak{F}^{\perp}$; so $\langle \mathfrak{x}, \mathfrak{e}_1 \rangle \langle \mathfrak{e}_1 \rangle^{-1} = \langle \mathfrak{x}, \mathfrak{e}_0 \rangle \langle \mathfrak{e}_0 \rangle^{-1}$. If we assume that $(\mathfrak{e}_1)_{1 \in I}$ is a maximal orthogonal family then by $L_c = L_s$ and Lemma 16 $\mathfrak{x} = \sum_I \langle \mathfrak{x}, \mathfrak{e}_1 \rangle \langle \mathfrak{e}_1 \rangle^{-1} \mathfrak{e}_1 = \langle \mathfrak{x}, \mathfrak{e}_0 \rangle \langle \mathfrak{e}_0 \rangle^{-1} \sum_I \mathfrak{e}_1$ and thus $\sum_I \mathfrak{e}_1 \in \mathfrak{F}^{\perp}$. If $(\mathfrak{e}_1)_{1 \in I}$ is not maximal then we write it as a difference of two maximal bounded families: Complete the given family to a maximal orthogonal bounded family $(\mathfrak{e}_1)_{1 \in I}$, $J \supset I$, by Zorn's Lemma. For $\mathfrak{t} \in J$ let $\alpha_1 := 1 \in k$ when $\mathfrak{t} \in I$ and $\alpha_1 := 2$ when $\mathfrak{t} \in J \setminus I$. The two families $(2\mathfrak{e}_1)_{1 \in J}$, $(\alpha_1\mathfrak{e}_1)_{1 \in J}$ are bounded maximal families to which the previous result may be applied. We get $\sum_{1 \in I} \mathfrak{e}_1 = \sum_{1 \in I} (2\mathfrak{e}_1) - \sum_{1 \in I} \alpha_1\mathfrak{e}_1 \in \mathfrak{E}$. \square COROLLARY 18. If \mathfrak{E} and $(e_l)_{l \in I}$ are as in Theorem 17 then $(e_l)_{l \in I}$ converges to $0 \in \mathfrak{E}$. COROLLARY 19. If $\mathfrak E$ is as in Theorem 17 then the cofinality type of Γ is ω_0 . In particular, the topology on $\mathfrak E$ satisfies the first countability axiom. COROLLARY 20. If & is as in Theorem 17 then all orthogonal families of non-zero vectors are countable. *Proof.* Let $(e_1)_{1 \in I}$ be such a family; by multiplying e_1 by a suitable scalar, if necessary, we may assume $(\phi \langle e_1 \rangle)_{1 \in I}$ to be bounded below. Since $\sum_{1 \in I} e_1$ exists by Theorem 17, the sets $I_{\gamma} = \{1 \in I \mid \phi \langle e_1 \rangle \leq \gamma\}$ are finite for all $\gamma \in \Gamma$. Let $(\gamma_i)_{i \in \mathbb{N}}$ be confinal in Γ . Then $I = \bigcup \{I_{\gamma_i} \mid i \in \mathbb{N}\}$ is countable. \square Definition 21. The elements of the group $\Gamma/2\Gamma$ are called types. Let $T:\Gamma\to\Gamma/2\Gamma$ be the canonical projection. $T\circ\varphi$ is constant on the square classes of k (elements of k/k^2) and $T\circ\varphi\circ\langle\rangle$ is constant on the "punctured" straight lines in E. A family $(e_1)_{1 \in I}$ of vectors in \mathfrak{E} is said to satisfy the type-condition iff for all $(\alpha_1)_{1 \in I} \in k^I$ the following holds: if $(\phi \langle \alpha_1 e_1 \rangle)_{1 \in I}$ is bounded (below) then $(\alpha_1 e_1)_{1 \in I}$ converges to $0 \in E$. COROLLARY 22. Let $\mathfrak E$ be as in Theorem 17. $\Gamma/2\Gamma$ is infinite. Each orthogonal family in $\mathfrak E$ satisfies the type-condition, equivalently, $\Gamma/2\Gamma$ satisfies (8) below. COROLLARY 23. Let & be as in Theorem 17. Then k is complete. *Proof.* By Corollary 19 it suffices to show that a sequence $(\alpha_i)_{i\in\mathbb{N}}$ with limit $0 \in k$ is summable. Let $(e_i)_{i\in\mathbb{N}}$ be maximal orthogonal in $\mathfrak E$ with $(\phi \langle e_i \rangle)_{i\in\mathbb{N}}$ bounded below. If $(\lambda_i)_{i\in\mathbb{N}} \in k^{\mathbb{N}}$ has $(\phi(\lambda_i))_{i\in\mathbb{N}}$ bounded below then $(\lambda_i e_i)_{i\in\mathbb{N}}$ is summable and by continuity of $\langle \ , \ \rangle$ we obtain $$\langle \sum_{\mathbf{N}} \lambda_i e_i, \sum_{\mathbf{N}} e_i \rangle = \sum_{\mathbf{N}} \lambda_i \langle e_i \rangle$$. Thus, all families $(\lambda_i \langle e_i \rangle)_{i \in \mathbb{N}}$ with bounded $(\lambda_i)_{i \in \mathbb{N}}$ are summable. Pick a strictly monotonic sequence $(n_i)_{i\in\mathbb{N}}\in\mathbb{N}^\mathbb{N}$ with $u_0=0$ and for all $i\in\mathbb{N}^+$ and all $m\geqslant n_i\colon \varphi(\alpha_m)>\varphi\langle e_i\rangle$, and set $A_i\colon=\sum\{\alpha_j\mid n_i\leqslant j< n_{i+1}\}$. The family $(A_i)_{i\in\mathbb{N}}$ is summable if and only if $(\alpha_i)_{i\in\mathbb{N}}$ summable and, if the sums exist, these must be equal. If we set $\lambda_i\colon=A_i\langle e_i\rangle^{-1}$ then, by what we have shown, the family of the $A_i=\lambda_i\langle e_i\rangle$ is summable. COROLLARY 24. Let & be as in Theorem 17. Then & is complete. *Proof.* Let $(\mathfrak{x}_i)_{i\in\mathbb{N}}$ be a Cauchy sequence (Corollary 19). For each fixed $\mathfrak{y}\in\mathfrak{E}$ the map $\mathfrak{x}\mapsto\langle\mathfrak{y},\mathfrak{x}\rangle$ is uniformly continuous. Hence by Cor. 23 the map $f:\mathfrak{y}\mapsto\lim_i\langle\mathfrak{y},\mathfrak{x}_i\rangle$ is well-defined. As it is a continuous linear map, its kernel is a closed hyper-plane and so $(L_c(\mathfrak{E})=L_{\perp\perp}(\mathfrak{E}))$ there is $\mathfrak{a}\in\mathfrak{E}$ such that $f(\mathfrak{y})=\langle\mathfrak{x},\mathfrak{a}\rangle$. Let $N\subseteq\mathbb{N}$ be infinite. Because $\lim\mathfrak{p}\langle\mathfrak{y},\mathfrak{a}-\mathfrak{x}_i\rangle=\infty$ for all $\mathfrak{y}\in\mathfrak{E}$ it follows by systematic use of the Cauchy-Schwarz inequality that $\{\mathfrak{p}\langle\mathfrak{a}-\mathfrak{x}_i\rangle\mid i\in N\}$ is not bounded above by any $\mathfrak{y}\in\Gamma$. Therefore $(\mathfrak{x}_i)_{i\in\mathbb{N}}$ converges to \mathfrak{a} . # VI. Sufficient conditions in ${\mathscr D}$ for $L_{ m c}=L_{ m \perp \perp}$ VI.1. Assumptions. In this chapter $(\mathfrak{E}; \langle , \rangle)$ is a definite space in the sense of Definition 15. Of the base field k we shall furthermore assume