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196 H. GROSS AND U.-M. KUNZI

IV.3. THE CLASS & OF DEFINITE SPACES. Positive definite forms over
ordered fields satisfy the triangle inequality as well as the Cauchy-Schwarz
inequality. We therefore set down

Definition 15. A definite space is a nondegenerate hermitean space
(€; {, >)over an involutorial division ring (k, *), char k # 2, that is equipped
with a *-valuation ¢ that has @(2) = 0 (cf. Remark 35) and that satisfies
one (and hence all) of the four statements in Lemma 14. A definite
space € will always be considered as a topological vector space, the topology
being given by the zero-neighbourhood basis U.: = {n e €| e<y) > y},yeT.
If (e 18 any family over vectors in € such that the net of all finite

(“partial”) sums ) e, has a limit x in € then we write x = ) ¢, and call
lel
(e ey SUummable.

LEMMA 16. Let (e),; be an orthogonal family in the definite space
€;<{, > and § its span. For each x in the topological closure of ¥
we have x = ) (x,¢> (e, te,.

el
Proof. Let 2 be the set of all finite subsets of I. For Ve 2 we set

¥y =y, (x ¢ (e 'e,. We have to prove that for each yeT there is
eV

Ue? such that o{(x—zx,) = ¢ for all V with U c Ve 2. Now there is
pe  with o(x—py) > & Pick Ue ? withgpespan {e, |1e U}. f U =« Ve?
then x — x, L x, — vy, so by “Pythagoras” (Lemma 14 (ii)) we obtain
e < ¢x—1y) = min{ex—x), ey =)} < OE—%y). O

V. NECESSARY CONDITIONS IN & FOR L. = L, |
‘The principal result of this section is

THEOREM 17 ([20]). Let € be an infinite dimensional definite space
carrying an admissible topology i.e., the topology mentioned in Definition 15 is
admissible in the sense of Definition 1 ; let furthermore (e),.; be an orthogonal
family in € such that (9{e))e; has a lower bound in T. Then
Y e, exists.
lel

Proof. Let &: = span {{e,> ‘e, — {eo> 'eo|rel}. We first wish to |
show that {e,> !¢, is not an element of the topological closure § Indeed, hd
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if v is a lower bound of (¢p<{e)) and if we let x: = } NN

1eU
— (ey> tey) be a typical vector of & (U some finite nonvoid subset of

1\{0}) then we get the inequalities
plr—<eoy Ty = @{(—1 —ZKL)<90>_ feg + Z M<e> le

= min {20(—1 =)~ 0<e0), 20() —9<er>)}

1eU
< 2min {p(—1-Y M) oA} —y < @(=1) —v = — 7.
teU U
Thus § # G.

Since '+ = F we have Ft # (0. Pick a non-zero xeF'; so
(x> (e> 7t = (x,e0)> (eoy~'. If we assume that (e),; is a maximal
orthogonal family then by L, = L, and Lemma 16 x = Y (x,¢,) {e;> ‘e

I

= (x,¢0) {eg> 'Y ¢, and thus ) e € ' If (¢)),, is not maximal then we
I I

write it as a difference of two maximal bounded families: Complete the given
family to a maximal orthogonal bounded family (e),.,, J = I, by Zorn’s
Lemma. For 1eJ let o;: = 1€k when tel and ao,: = 2 when 1e J\IL.
The two families (2e),c,, (0;¢),.; are bounded maximal families to which the
previous result may be applied. We get > e, = Y (2¢) — > e, e €. [
lel lel tel

CoroLLArRY 18. If € and (&), are as in Theorem 17 then

(e ey convergesto 0e E. O

CoroOLLARY 19. If € s as in Theorem 17 then the cofinality type
of T' is ®¢. In particular, the topology on € satisfies the first
countability axiom. O

CorOLLARY 20. If € is as in Theorem 17 then all orthogonal families
of non-zero vectors are countable.

Proof. Let (e)),; be such a family; by multiplying ¢, by a suitable
scalar, if necessary, we may assume (p<{e,>),.; to be bounded below. Since
). ¢, exists by Theorem 17, the sets I = {1el]|@{e;) < v} are finite for all

Lel

veI. Let (;)ien be confinal in I'. Then I = U {I, | ie N} is countable. []

Definition 21. The elements of the group I'/2I" are called types. Let
T'T - I'/2T be the canonical projection. T o @ is constant on the square
'l clisses of k (elements of k/kz) and T o ¢ o { } is constant on the “punctured”
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straight lines in E. A family (e),; of vectors in € is said to satisfy the
type-condition iff for all (o), € k! the following holds: if (@<oye, ) is
bounded (below) then (x¢,),; converges to 0 € E.

COROLLARY 22. Let € be as in Theorem 17. T'J2I" is infinite. Each
orthogonal family in € satisfies the type-condition, equivalently, T'/2T
satisfies (8 ) below. O

CoOROLLARY 23. Let & be as in Theorem 17. Then k is complete.

Proof. By Corollary 19 it suffices to show that a sequence (a;);n
with limit 0 € k is summable. Let (¢;),.y be maximal orthogonal in € with
(p<{e;))en bounded below. If (A)n € kN has (@(X)),ey bounded below then
(A:#))ien 18 summable and by continuity of { , > we obtain

< Z rie;, Z ;) = Z Aie;) .
N N N

Thus, all families (A;{e;>);cx With bounded (A,),.5 are summable.

Pick a strictly monotonic sequence (n,),.x € NN with u, = 0 and for all
ieN" and all m > n;: ¢o(a,) > @{e;), and set 4;: = > {o;|n; <j < myyq)
The family (4,),.x 1s summable if and only if (v;),.,y Summable and, if the
sums exist, these must be equal. If we set X;: = A4,{e¢;>” ! then, by what
we have shown, the family of the A; = A;{e;> is summable. ]

COROLLARY 24. Let & be as in Theorem 17. Then € is complete.

Proof. Let (x,),.n be a Cauchy sequence (Corollary 19). For each fixed
ne € the map x+ (y, ) is uniformly continuous. Hence by Cor. 23 the
map f:ylim {y, ;> is well-defined. As it is a continuous linear map,

1

its kernel is a closed hyper-plane and so (L(€) = L, (€)) there is ae€
such that f(y) = (%, a). Let N = N be infinite. Because lim ¢{y, a—x,> = ©
for all y e € it follows by systematic use of the Cauchy-Schwarz inequality
that {@{a—zx;>|ie N} is not bounded above by any yeI. Therefore
(x;);cn CONverges to a.

VI. SUFFICIENT CONDITIONS IN & FOR L, = L, |

VI.1. AssumpTiONS. In this chapter (€;( , >) is a definite space In
the sense of Definition 15. Of the base field k we shall furthermore assume j
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