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IV. The fundamental inequalities in definite spaces

IV. 1. ^Valuations (cf. [14]). Let (k, *) be an involutorial division ring

and T a totally ordered (additively written) abelian group. A surjective map

(7) cp: k - T [j {oo} (a + oo oo for all aeHJjoo})

is called ^valuation iff (i) cp(x + y) ^ min{cp(x), cp(y)}, (ii) cp(xy) cp(x) + cp(y),

(iii) cp(x) — co ox 0, (iv) cp(x) cp(x*).

The set of all U£: {xek \ cp(x) ^e), se T, is a neighbourhood basis

for a division ring topology on k. In general we think of (k, *) as equipped
with this topology.

IV.2. The inequalities. Assume that char k ^ 2 and that the valuation
in (7) has cp(2) 0 (cf. Remark 35). Let be a hermitean form on a

Lspace (£. Assume (£ non-degenerate ((^^(O)). Recall that we write "<*)" f°r
(a-, ac>, x e (£. It is useful to know a proof for the following fact

Lemma 14 ([20]). The following four statements are equivalent

(i) Vac, t) g (£: cp<ac + t)> ^ min{cp<ac>, cp<t)>} (triangle inequality)

(ii) Vx, 9 e © : <ï, t)> 0=><p<i + i)> min{cp<x>, cp<t)>}

("Pythagoras"

(iii) Vac, r) e (£: cp<ac, t)) ^ min{cp<ac>, cp<t)>} ("weak Cauchy-Schwarz")

(iv) Vac, t) e (E : 2cp<ac, t)> ^ cp<ac> + cp<t}> ("Cauchy-Schwarz")

(Notice that each statement implies anisotropy of (£).

Proof (i) => (ii) : Let x _L t) and

<p<x> ^ cp<î)> ; <p<x> <p<2x> cp<(x + q)

+ (*-!))> > min{(p<x + t)>, cp<x-t)>} <p<x + i)> > cp<x>

(ii) => (iv) : Assume ac ^ 0 # t). Pick b in the span of ac, X) such that

* b + A,t),b-Lt); 2cp<ac, t}> «= 2cp<b H- p> 2cp<?u), t)>

- 2cp(k) + 2cp<t}> cp<X-t)> + cp<t}> ^ (p<ac> + cp<t)>

(iv) => (iii) : trivial

(iii) => (i) : straight forward.
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IV.3. The class Fè of definite spaces. Positive definite forms over
ordered fields satisfy the triangle inequality as well as the Cauchy-Schwarz

inequality. We therefore set down

Definition 15. A definite space is a nondegenerate hermitean space

((£; < over an involutorial division ring (k, *), char k ^ 2, that is equipped
with a ^valuation cp that has (p(2) 0 (cf. Remark 35) and that satisfies

one (and hence all) of the four statements in Lemma 14. A definite

space (£ will always be considered as a topological vector space, the topology
being given by the zero-neighbourhood basis UY : {p g (£ | (p<t)> > y}, y g T.

If Wie/ is any family over vectors in (£ such that the net of all finite
("partial") sums et has a limit at in (£ then we write at £ el and call

16/

(ei)i/ summable.

Lemma 16. Let (et)le/ be an orthogonal family in the definite space

((£ ; < and g span. For each at in the topological closure of g
we have x£ <*, ev> <cv>~1el.

16/

Proof. Let be the set of all finite subsets of I. For V e & we set

xv: Y <at, et> <el)~1el. We have to prove that for each yeT there is
leV

U e 0* such that cp<at — atF) ^ s for all V with U c= V e 0>. Now there is

peg with cp(at — x)} > s. Pick U e 0* with x) e span {et 11 e U}. If U c= V e

then at — xv 1 xv — v), so by "Pythagoras" (Lemma 14 (ii)) we obtain

8 ^ (p<at-t}> min{cp<at-%>, cp<atF-p>} ^ <p<at-%>.

V. Necessary conditions in @ for Lc L11

The principal result of this section is

Theorem 17 ([20]). Let (£ be an infinite dimensional definite space

carrying an admissible topology i.e., the topology mentioned in Definition 15 is

admissible in the sense of Definition 1 ; let furthermore (et)le/ be an orthogonal

family in (£ such that (<p<el))l6/ has a lower bound in T. Then

Y exists.
16/

Proof. Let g: span {<et>~ 1el - <e0)_1e0|i el}. We first wish to

show that <e0)_1e0 is not an element of the topological closure g. Indeed,
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