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IV. THE FUNDAMENTAL INEQUALITIES IN DEFINITE SPACES

[V.1. *-VaLuaTions (cf. [14]). Let (k, *) be an involutorial division ring
and T a totally ordered (additively written) abelian group. A surjective map

(7) ¢:k—>T(){} (a+oo=c0 forall ael'|J{oo})

is called *-valuation iff (i) @(x +y) = min{o(x), e(»)}, (i) P(xy) = @(x) + ©(y),
(iii) p(x) = o0 <> x = 0, (iv) ¢(x) = @(x¥).

The set of all U,: = {xek|o(x) > ¢}, eI, is a neighbourhood basis
for a division ring topology on k. In general we think of (k, *) as equipped
with this topology.

IV.2. THE INEQUALITIES. Assume that char k # 2 and that the valuation
in (7) has ¢@(2) = 0 (cf. Remark 35). Let { , > be a hermitean form on a
k-space €. Assume € non-degenerate (€ =(0)). Recall that we write “{x)” for
(x, %), x € €. It 1s useful to know a proof for the following fact

LEMMA 14 ([20]). The following four statements are equivalent
(i) Vi, pe€:oelx+y) = min{olx), e{y)>} (triangle inequality)

(i) Ve,pe€:{(x,p) = 0=0x+y) = min{e{x), e<{n)}
(“Pythagoras”™)

(i) Vz pe€: @<z, ) = min{ex), o{n)d} (“weak Cauchy-Schwarz”)
(1v) Vx,pe€: 20z, p) = ox> + 0<{y) (“Cauchy-Schwarz”)

( Notice that each statement implies anisotropy of €).

Proof. (i) = (ii): Let x L vy and
oCx) < <95 @<x) = 92x) = @{(x+)
+ (x—1)> = min{edx+9), px—9>} = e{x+1) > o<x).
(i) = (iv): Assume x # 0 # y. Pick b in the span of x, p such that
x=D0b+ iy, bLly; 20<{x19) = 2¢<b+Ay, 9) = 20<{\y, )
= 20(M) + 20<n> = e<{Ay) + ¢<y) = o<x) + ¢<y).
(1v) = (ii1): trivial

(111) = (i): straight forward. O
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IV.3. THE CLASS & OF DEFINITE SPACES. Positive definite forms over
ordered fields satisfy the triangle inequality as well as the Cauchy-Schwarz
inequality. We therefore set down

Definition 15. A definite space is a nondegenerate hermitean space
(€; {, >)over an involutorial division ring (k, *), char k # 2, that is equipped
with a *-valuation ¢ that has @(2) = 0 (cf. Remark 35) and that satisfies
one (and hence all) of the four statements in Lemma 14. A definite
space € will always be considered as a topological vector space, the topology
being given by the zero-neighbourhood basis U.: = {n e €| e<y) > y},yeT.
If (e 18 any family over vectors in € such that the net of all finite

(“partial”) sums ) e, has a limit x in € then we write x = ) ¢, and call
lel
(e ey SUummable.

LEMMA 16. Let (e),; be an orthogonal family in the definite space
€;<{, > and § its span. For each x in the topological closure of ¥
we have x = ) (x,¢> (e, te,.

el
Proof. Let 2 be the set of all finite subsets of I. For Ve 2 we set

¥y =y, (x ¢ (e 'e,. We have to prove that for each yeT there is
eV

Ue? such that o{(x—zx,) = ¢ for all V with U c Ve 2. Now there is
pe  with o(x—py) > & Pick Ue ? withgpespan {e, |1e U}. f U =« Ve?
then x — x, L x, — vy, so by “Pythagoras” (Lemma 14 (ii)) we obtain
e < ¢x—1y) = min{ex—x), ey =)} < OE—%y). O

V. NECESSARY CONDITIONS IN & FOR L. = L, |
‘The principal result of this section is

THEOREM 17 ([20]). Let € be an infinite dimensional definite space
carrying an admissible topology i.e., the topology mentioned in Definition 15 is
admissible in the sense of Definition 1 ; let furthermore (e),.; be an orthogonal
family in € such that (9{e))e; has a lower bound in T. Then
Y e, exists.
lel

Proof. Let &: = span {{e,> ‘e, — {eo> 'eo|rel}. We first wish to |
show that {e,> !¢, is not an element of the topological closure § Indeed, hd




	IV. The fundamental inequalities in definite spaces

