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192 H. GROSS AND U.-M. KUNZI

Orthomodular lattices that derive from orthomodular quadratic spaces
make up only a fraction of abstract orthomodular lattices (refer to [13, 16, 17]).
The orthomodular law (4) is exceedingly enigmatic even if attention is restricted
to orthomodular quadratic spaces. The complexity of the orthomodular
conundrum does not surprise us anymore.

II. RESULTS ON ORTHOMODULAR SPACES PRIOR TO KELLER’S DISCOVERY

II.1. RESULTS WITHOUT TOPOLOGICAL RESTRICTIONS ON €. We begin
with a classic ([1]).

THEOREM 4 (Amemiya-Araki-Piron). Let k be one of R,C,H and
€ an infinite-dimensional k-vector space equipped with a positive definite
hermitean form < , > (relative to the usual involution * in k). Then
€ is orthomodular iff € is complete as a normed space

1
(=zll: = <z x)>?),
ie. iff € isa Hilbert space.

If, in the setting of Thm. 4, we pass to subfields of k then the same
conclusion can be drawn although the proof is much more tricky [9]:

THEOREM 5 (Gross-Keller). Let k be an archimedean (Baer-)ordered
*_field ([14, p. 219]) and € an infinite dimensional k-vector space equipped
with a positive definite hermitean form. Then the following are equivalent

(i) k isoneof R,C,H and € is a Hilbert space
() LJ€) = L, (€) ie. € isorthomodular

1 1

(i) LJ(C€) = L, (€) (c refers to the norm |z |: = {z, x)feki)
(iv) LJ(€) = L, ,(€) = L(C).

Remark 6. In [24] sequence spaces €: = /,(k) for k = H are considered
and equipped with hermitean maps (not forms) € x € — H. Again, the
lattice of L-closed subspaces in € is orthomodular iff k = R, C, or H.

Another attempt to chance upon new orthomodular forms is to replace
the reals by the non-archimedian ordered field *R, a non-standard model
of R. However [28]:
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TueOREM 7 (Morash). The inner product on 9 = £,(R) induces a positive
definite symmetric bilinear form *$ x *9 — *R;  here * is the set
(linear *R-space) of equivalence classes in SN induced by the free ultra
filter ' U on N used to define *R. The lattice L, L(*9) is complete
but not orthomodular.

Remark 8. In [28] it is also shown that the ultra filter construction
applied to a product of lattices isomorphic to L, ,(¢,(R)) leads to an ortho-
modular lattice that, alas, is not complete. This loss of completeness,
incidentally, is the (only) obstacle on the way to an easy (ultrafilter construc-
tion + Theorem 3) existence proof for orthomodular spaces different from
Hilbert space.

A rather general theorem is ([33]):

THEOREM 9 (Wilbur). Let (k,*) be commutative and such that for each
*.symmetric element A€k there is aek with A= t+oa* If € is
an orthomodular space over k,dim € infinite, then k = R or C with
* the identity or the usual conjugation, respectively (so € is a Hilbert
space ).

Remark 10. The formulation of Thm. 9 in [33] also admits skew (k, *)
with one additional assumption. However, by Dieudonné’s Lemma ([10 p. 18])
(k, *) must then be a quaternion algebra with * the usual conjugation.

Wilbur’s result is generalized to ordered *-fields in [14, § 6].

Hermitean spaces that are orthogonal sums of finite dimensional sub-
spaces are called diagonal; subspaces of diagonal spaces are termed pre-
diagonal. There is a full-fledged theory about prediagonal spaces of infinite
dimensions. Deplorably, we have ([9]):

THeEOREM 11 (Gross-Keller). Let dim € > N,. If € is prediagonal

then it is not orthomodular. Thus, in particular, dim € > X, if € is
orthomodular.

Orthomodularity of a space € has strange consequences for the base
field of € We just mention one of several [9, p. 15].

THEOREM 12 (Gross-Keller). If card k < 2%° then an infinite dimension
al k-space € cannot be orthomodular.

IL2. A RESULT ON SPACES € EQUIPPED WITH AN ADMISSIBLE TOPOLOGY.
Cortain well known classes of spaces € that carry admissible topologies can
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be proved not to contain orthomodular specimen; we refer to [9]. Here we
mention but one result ([9, p. 20]); it has been crucial on the road to
Keller’s discovery. The idea of its proof is used again in the proof of
Theorem 17 below.

THEOREM 13 (Gross-Keller). Let k be a non archimedean ordered field
and equipped with its order topology; let < , > be a definite symmetric
form on the k-vector space €. Equip € with the norm topology

1 1

(lx]: = <z, )2 ek?).

Assume that & contains at least one orthogonal family (e),.n that is
bounded, i.e. for suitable o, Bek

(6) 0<a<ey,e) <P (EN)

III. KELLER’S EXAMPLE

The authors of [9] lamented about the “irksome” condition (6) which,
indeed, need not be satisfied (loc. cit., p. 89). Keller finally noticed that (6)
pointed at the very crux of the matter. He considered the transcendental
extension k, = Q(X)),ny With the unique ordering that has X, > ¢ for all
geQ and X! < X;,, for all i and all n; then he let k be the completion
of k, by means of Cauchy sequences. € is the linear k-space of all
(V)ien € kKN such that ) y?X; exists (addition and scalar multiplication com-

N

ponent wise) and {(V)ien, (Zdieny: = D, y:iz;X;. Original and ingenious argu-
N

ments given in [18] establish orthomodularity of €. (This also follows from
our Theorem 36 below.) |

Gross noticed that Keller’s construction works for valued fields ([6, 7, 20]).
An example is also contained in [14, p. 237]).

Keller’s choice of a field over which one can build orthomodular spaces
has been good: as our results show his space exhibits the typical properties
of an orthomodular space with an admissible topology (cf. Remark 29 below).
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