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ON A CLASS OF ORTHOMODULAR QUADRATIC SPACES

by Herbert Gross and Urs-Martin KUNz1

0. INTRODUCTION

The most important property of the classical Hilbert space
9 =17¢, = {(M)ien | MieR, ZA] < 0}

is expressed by the projection theorem: the orthogonal complement xt
of a closed linear subspace X is a linear supplement, in formulae

(P)) ¥=X=9=Xx

In the space $ it happens that precisely those linear subspaces X are closed
which coincide with their bi-orthogonals, X = YeX= (XHt (“X is L-
closed”). Therefore we may express the projection theorem here in the following
purely algebraic way

(P5) X=XHY'=>9=xpx

If, in the following, $ is any vector space over a division ring k and
equipped with a hermitean form, then $ is called orthomodular if (P,)
holds for all linear subspaces X of $.

The problem is to determine what orthomodular spaces there are besides
classical Hilbert space (over k=R, C, H). Notice that finite dimensional spaces
are uninteresting in this connection because then validity of the projection
theorem coincides with non-isotropy of the form. The first infinite dimensional
orthomodular space different from the classical ones was discovered in 1979
by H. A. Keller [10 p. 3; 18].

We adduce the following motivations for the study of orthomodular
spaces.

§ 1. The requirement (P,) on a hermitean space is an extraordinarily
strong one. For years the endeavour of a number of people was directed

towards proving that there are no examples other than classical Hilbert
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space [1, 9, 14, 25, 27, 33]. Indeed, all of the prominent Hilbert-like
quadratic spaces discussed in the literature could be shown not to be ortho-
modular (See Sections II.1, II.2 below). As we now know a multitude of
orthomodular spaces — there are examples for any characteristic of k —
the question of what really lurks behind the projection theorem has become
very interesting. The problem to determine all hermitean spaces with (P,)
i1s far from being solved. Although no topologies are involved in (P,),
all methods for the construction of orthomodular spaces that are known are
based on topological considerations. The problem raises difficult questions
concerning fields.

§ 2. The Clifford algebras of certain orthomodular spaces H over k are
([6, 7]) normed k-algebras that are division rings (*-valued division rings
in the sense of [14]). As the form on H has a canonical extension to its
Clifford algebra (char k#2), we obtain here a rather interesting class of
division algebras that are infinite-dimensional over their centers. These division
algebras, as hermitean spaces, are not orthomodular but they can be embedded
into orthomodular spaces.

§3. Let  be Keller’s space of [18] and #4($) the algebra of bounded
operators on $. There is hope to chance upon interesting rings of operators.
Keller has given examples [19] of self-adjoint 4 € #4(9) that share, among
others, the following properties. The von Neumann algebra {4}  (centralizer)
1s commutative; it 1S however — in contrast to the classical case —
irreducible, 4 has no invariant subspaces. In these examples the arithmetic
properties of k play a decisive role. One should first settle the problem
whether all {4} with A4 € #(9) self-adjoint turn out commutative.

§ 4. In the lattice theoretic viewpoint in physics introduced by G. Birk-
hoff and J. von Neumann ([4]) the experimentally verifiable propositions
about a physical system are identified with the elements of an ortho-
complemented lattice (Sec. 1.2). On this lattice observables and states can be
defined. In quantum physics one assumes that this lattice is the lattice
L, (o) of an orthomodular space § (or products of such lattices if super
selection rules are present). If, for example, it could be made plausible that
$ is over an archimedean ordered field and definite then by Theorem 35
$ would be a classical Hilbert space (as desired). In our opinion, the main
use of Keller’s discovery, as far as “quantum logic” is concerned, is to let
the axiom that the logic be the usual Hilbert space structure appear even
more ad hoc than is generally admitted. The base field of Keller’s space $ }
is non-archimedean ordered. The frequently heard observation that scales on i |
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measuring devices in the laboratory are by necessity archimedean ordered is
besides the point, for, scales are not connected with the division ring under-
lying the space $ but with the range R of the probability distributions

fiL(9)—[0,1] =R

that thrive on the lattice L, (). Remarkably enough, there is a lavish supply
of real valued probability distributions on L, ,($) for our non-classical
orthomodular spaces $ in spite of the teratological nature of the base fields
(cf. Problem 7 in XIII). Independent of any axiomatics there is the fascinating
mathematical problem to classify these probability distributions. No approach
a la Gleason is possible here [8].

The present paper is meant as an introduction to the topic of ortho-
modular quadratic spaces. Attention is restricted to hermitean spaces
(€; <, >) over valued fields or ordered fields. Let & be the class of all
spaces € which admit a vector space topology that makes { , ) continuous
(Section VIII). For expository purposes our main interest here is in the sub-
class 2 < & of all “definite” spaces (Definition 15): these are the spaces €
where a norm defined on € via the form ¢ , ) and the valuation (ordering
respectively) satisfies a Cauchy-Schwarz type inequality (Section 1V). In both
classes &, & the spaces satisfying (P,) can be characterized (Theorems 28,
34, 36); these spaces satisfy (P,) as well. This characterization allows to con-
struct orthomodular spaces at will.

We further give a survey of some older results related to orthomodular
spaces (Section IT). We also append a list of open problems.

I. ORTHOMODULAR SPACES (TERMINOLOGY)

I1 CONVENTIONS FOR THE WHOLE PAPER: In this paper we consider
left vector spaces € over division rings k with involution o o* (anti-
automorphism of k whose square is the identity). € is equipped with an
anisotropic hermitean form ¢ , »; thus by definition for all

a,bceC aek:
(ra+b, ¢) = ala, ¢) + <b, ), <a,b> = <b,ad* (a,ad =0 iff a=0.

We shall often abreviate “{a, a)” by “¢a)”. If € is infinite dimensional
there are always subspaces § that are properly contained in their bi-

orthogonals **+: = (F)* [10; Lemma 3, p. 20]. Let L(E) be the set of
all linear subspaces of € and
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