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ON A CLASS OF ORTHOMODULAR QUADRATIC SPACES

by Herbert Gross and Urs-Martin KUNz1

0. INTRODUCTION

The most important property of the classical Hilbert space
9 =17¢, = {(M)ien | MieR, ZA] < 0}

is expressed by the projection theorem: the orthogonal complement xt
of a closed linear subspace X is a linear supplement, in formulae

(P)) ¥=X=9=Xx

In the space $ it happens that precisely those linear subspaces X are closed
which coincide with their bi-orthogonals, X = YeX= (XHt (“X is L-
closed”). Therefore we may express the projection theorem here in the following
purely algebraic way

(P5) X=XHY'=>9=xpx

If, in the following, $ is any vector space over a division ring k and
equipped with a hermitean form, then $ is called orthomodular if (P,)
holds for all linear subspaces X of $.

The problem is to determine what orthomodular spaces there are besides
classical Hilbert space (over k=R, C, H). Notice that finite dimensional spaces
are uninteresting in this connection because then validity of the projection
theorem coincides with non-isotropy of the form. The first infinite dimensional
orthomodular space different from the classical ones was discovered in 1979
by H. A. Keller [10 p. 3; 18].

We adduce the following motivations for the study of orthomodular
spaces.

§ 1. The requirement (P,) on a hermitean space is an extraordinarily
strong one. For years the endeavour of a number of people was directed

towards proving that there are no examples other than classical Hilbert
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space [1, 9, 14, 25, 27, 33]. Indeed, all of the prominent Hilbert-like
quadratic spaces discussed in the literature could be shown not to be ortho-
modular (See Sections II.1, II.2 below). As we now know a multitude of
orthomodular spaces — there are examples for any characteristic of k —
the question of what really lurks behind the projection theorem has become
very interesting. The problem to determine all hermitean spaces with (P,)
i1s far from being solved. Although no topologies are involved in (P,),
all methods for the construction of orthomodular spaces that are known are
based on topological considerations. The problem raises difficult questions
concerning fields.

§ 2. The Clifford algebras of certain orthomodular spaces H over k are
([6, 7]) normed k-algebras that are division rings (*-valued division rings
in the sense of [14]). As the form on H has a canonical extension to its
Clifford algebra (char k#2), we obtain here a rather interesting class of
division algebras that are infinite-dimensional over their centers. These division
algebras, as hermitean spaces, are not orthomodular but they can be embedded
into orthomodular spaces.

§3. Let  be Keller’s space of [18] and #4($) the algebra of bounded
operators on $. There is hope to chance upon interesting rings of operators.
Keller has given examples [19] of self-adjoint 4 € #4(9) that share, among
others, the following properties. The von Neumann algebra {4}  (centralizer)
1s commutative; it 1S however — in contrast to the classical case —
irreducible, 4 has no invariant subspaces. In these examples the arithmetic
properties of k play a decisive role. One should first settle the problem
whether all {4} with A4 € #(9) self-adjoint turn out commutative.

§ 4. In the lattice theoretic viewpoint in physics introduced by G. Birk-
hoff and J. von Neumann ([4]) the experimentally verifiable propositions
about a physical system are identified with the elements of an ortho-
complemented lattice (Sec. 1.2). On this lattice observables and states can be
defined. In quantum physics one assumes that this lattice is the lattice
L, (o) of an orthomodular space § (or products of such lattices if super
selection rules are present). If, for example, it could be made plausible that
$ is over an archimedean ordered field and definite then by Theorem 35
$ would be a classical Hilbert space (as desired). In our opinion, the main
use of Keller’s discovery, as far as “quantum logic” is concerned, is to let
the axiom that the logic be the usual Hilbert space structure appear even
more ad hoc than is generally admitted. The base field of Keller’s space $ }
is non-archimedean ordered. The frequently heard observation that scales on i |
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measuring devices in the laboratory are by necessity archimedean ordered is
besides the point, for, scales are not connected with the division ring under-
lying the space $ but with the range R of the probability distributions

fiL(9)—[0,1] =R

that thrive on the lattice L, (). Remarkably enough, there is a lavish supply
of real valued probability distributions on L, ,($) for our non-classical
orthomodular spaces $ in spite of the teratological nature of the base fields
(cf. Problem 7 in XIII). Independent of any axiomatics there is the fascinating
mathematical problem to classify these probability distributions. No approach
a la Gleason is possible here [8].

The present paper is meant as an introduction to the topic of ortho-
modular quadratic spaces. Attention is restricted to hermitean spaces
(€; <, >) over valued fields or ordered fields. Let & be the class of all
spaces € which admit a vector space topology that makes { , ) continuous
(Section VIII). For expository purposes our main interest here is in the sub-
class 2 < & of all “definite” spaces (Definition 15): these are the spaces €
where a norm defined on € via the form ¢ , ) and the valuation (ordering
respectively) satisfies a Cauchy-Schwarz type inequality (Section 1V). In both
classes &, & the spaces satisfying (P,) can be characterized (Theorems 28,
34, 36); these spaces satisfy (P,) as well. This characterization allows to con-
struct orthomodular spaces at will.

We further give a survey of some older results related to orthomodular
spaces (Section IT). We also append a list of open problems.

I. ORTHOMODULAR SPACES (TERMINOLOGY)

I1 CONVENTIONS FOR THE WHOLE PAPER: In this paper we consider
left vector spaces € over division rings k with involution o o* (anti-
automorphism of k whose square is the identity). € is equipped with an
anisotropic hermitean form ¢ , »; thus by definition for all

a,bceC aek:
(ra+b, ¢) = ala, ¢) + <b, ), <a,b> = <b,ad* (a,ad =0 iff a=0.

We shall often abreviate “{a, a)” by “¢a)”. If € is infinite dimensional
there are always subspaces § that are properly contained in their bi-

orthogonals **+: = (F)* [10; Lemma 3, p. 20]. Let L(E) be the set of
all linear subspaces of € and
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(1) L, (€): = {(FeL©®)|F =T}
We are interested in the set of splitting subspaces
(2) L(€): = {FeLO®)|F + & = €}

Clearly L(€) < L, (€). A hermitean space € is called orthomodular iff
Li=L,,.In[6,7 9, 10, 18, 20; 31, 32] orthomodular spaces and forms
were termed “hilbertian”. However, “hilbertian form” already has a different
meaning in the theory of normed algebras [5, Chap. XV.6] which actually
causes equivocations. We have therefore yielded to the “orthomodular”-
terminology.

In the following k is usually assumed to be a topological division
ring and € equipped with a vector space topology t (which means that t
1s compatible with the additive group of & and scalar multiplication
k x € - € 1s continuous) such that the form < , > on € is (separately)
continuous. We then consider the set of closed linear subspaces in (G, 1)

(3) L(€): = {FeL©®)|T = &}
We have L, (€) < L(€) by continuity of the form.

Definition 1. The vector space topology Tt on € is admissible if and
only if L, (€) = L/(C).

Remark 2. All (infinite dimensional) orthomodular spaces € discovered
hitherto carry an admissible topology and this topology is needed to handle
the space. Furthermore, all orthomodular spaces other than classical Hilbert
space are separable in the sense that they contain countable families with
1-dense span. This is quaint. No non-separable orthomodular space has
been discovered so far. Cf. Remark 8.

I.2 ApPENDIX ON LATTICES. These brief remarks are not needed in
order to understand the rest of the paper; however they throw light on
concepts and related problems.

A lattice L is a non-void partially ordered set such that

aV b: =sup{a, b}, a A b: = inf{a, b}

exist for all pairs (and hence all finite sets) of elements of L. If arbitrary
sets of elements of L admit suprema and infima then L is called complete.
We always assume that L has universal bounds 0 and 1. An element b
is said to cover an element a,a < -b, when a < b and for no ¢ we have
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1< c <b; atoms are elements that cover 0. A lattice is atomistic when
every non-zero element a is the supremum of all atoms < a. The following
property is the covering property: “if p is an atom and a A p = 0 then
a<+aV p. Both L(€) and L, ,(€) are lattices with respect to S whereas
L{(€) is not, in general, a lattice (cf. [9]). In fact, L(€) and L, 1(€) are
complete, atomistic and they enjoy the covering property.

An orthocomplementation a — a* on a lattice L is a decreasing involution
withat V a = 1, at A a = 0. It follows that (aV b)* = a* A b*. An ortho-
complemented lattice L is called orthomodular if its elements satisfy [15, p. 780]

4) a<b=b=aV (bAah)

VAN

In an orthomodular lattice L we call compatible two elements a, b if
b=(bAa) V (bAa'); this is the case iff the orthocomplemented lattice
generated by a, b is distributive ([29, (2.25) p. 28]). If 0,1 are the only
elements compatible with all elements of L then L is called irreducible.
A propositional system is a complete, orthomodular, atomistic lattice that enjoys
the covering property.

The lattice L, ,(€) attached to a hermitean space is always ortho-
complemented (recall that we assume the forms to be non-isotropic). If
€ is orthomodular, then L, (€) is an orthomodular lattice, and conversely

’ (hence the terminology). In fact, one easily verifies:

(5) If L(€) = L, ,(€) then L, (€) is an irreducible propositional system.

The following converse of (5) is essentially due to G. Birkhoff and
J.v. Neumann [4, Appendix] and R. Baer [2, p. 302] (Cf. [10, p. 457, [23]).

THEOREM 3. Let L be any irreducible propositional system of dimension
>4 (ie. there is a chain 0 <a<b<c<d in L) Then L is

L-isomorphic to the lattice L, (€) of some suitable orthomodular space
€ over a suitable division ring k.

This theorem explains the interest that the quantum logic approach
to axiomatic quantum mechanics had taken in propositional systems: they
lead towards the classical interpretation. The rub is that the division
ring k need not be R, C or H as we know since Keller's example [18].
In order to arrive at the classical structures stronger axioms on the lattice
have to be postulated such as, for example, in [12, 33]. The reader interested

| | in this kind of foundational problems in physics is refered to [3, 12,
15,291,
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Orthomodular lattices that derive from orthomodular quadratic spaces
make up only a fraction of abstract orthomodular lattices (refer to [13, 16, 17]).
The orthomodular law (4) is exceedingly enigmatic even if attention is restricted
to orthomodular quadratic spaces. The complexity of the orthomodular
conundrum does not surprise us anymore.

II. RESULTS ON ORTHOMODULAR SPACES PRIOR TO KELLER’S DISCOVERY

II.1. RESULTS WITHOUT TOPOLOGICAL RESTRICTIONS ON €. We begin
with a classic ([1]).

THEOREM 4 (Amemiya-Araki-Piron). Let k be one of R,C,H and
€ an infinite-dimensional k-vector space equipped with a positive definite
hermitean form < , > (relative to the usual involution * in k). Then
€ is orthomodular iff € is complete as a normed space

1
(=zll: = <z x)>?),
ie. iff € isa Hilbert space.

If, in the setting of Thm. 4, we pass to subfields of k then the same
conclusion can be drawn although the proof is much more tricky [9]:

THEOREM 5 (Gross-Keller). Let k be an archimedean (Baer-)ordered
*_field ([14, p. 219]) and € an infinite dimensional k-vector space equipped
with a positive definite hermitean form. Then the following are equivalent

(i) k isoneof R,C,H and € is a Hilbert space
() LJ€) = L, (€) ie. € isorthomodular

1 1

(i) LJ(C€) = L, (€) (c refers to the norm |z |: = {z, x)feki)
(iv) LJ(€) = L, ,(€) = L(C).

Remark 6. In [24] sequence spaces €: = /,(k) for k = H are considered
and equipped with hermitean maps (not forms) € x € — H. Again, the
lattice of L-closed subspaces in € is orthomodular iff k = R, C, or H.

Another attempt to chance upon new orthomodular forms is to replace
the reals by the non-archimedian ordered field *R, a non-standard model
of R. However [28]:
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TueOREM 7 (Morash). The inner product on 9 = £,(R) induces a positive
definite symmetric bilinear form *$ x *9 — *R;  here * is the set
(linear *R-space) of equivalence classes in SN induced by the free ultra
filter ' U on N used to define *R. The lattice L, L(*9) is complete
but not orthomodular.

Remark 8. In [28] it is also shown that the ultra filter construction
applied to a product of lattices isomorphic to L, ,(¢,(R)) leads to an ortho-
modular lattice that, alas, is not complete. This loss of completeness,
incidentally, is the (only) obstacle on the way to an easy (ultrafilter construc-
tion + Theorem 3) existence proof for orthomodular spaces different from
Hilbert space.

A rather general theorem is ([33]):

THEOREM 9 (Wilbur). Let (k,*) be commutative and such that for each
*.symmetric element A€k there is aek with A= t+oa* If € is
an orthomodular space over k,dim € infinite, then k = R or C with
* the identity or the usual conjugation, respectively (so € is a Hilbert
space ).

Remark 10. The formulation of Thm. 9 in [33] also admits skew (k, *)
with one additional assumption. However, by Dieudonné’s Lemma ([10 p. 18])
(k, *) must then be a quaternion algebra with * the usual conjugation.

Wilbur’s result is generalized to ordered *-fields in [14, § 6].

Hermitean spaces that are orthogonal sums of finite dimensional sub-
spaces are called diagonal; subspaces of diagonal spaces are termed pre-
diagonal. There is a full-fledged theory about prediagonal spaces of infinite
dimensions. Deplorably, we have ([9]):

THeEOREM 11 (Gross-Keller). Let dim € > N,. If € is prediagonal

then it is not orthomodular. Thus, in particular, dim € > X, if € is
orthomodular.

Orthomodularity of a space € has strange consequences for the base
field of € We just mention one of several [9, p. 15].

THEOREM 12 (Gross-Keller). If card k < 2%° then an infinite dimension
al k-space € cannot be orthomodular.

IL2. A RESULT ON SPACES € EQUIPPED WITH AN ADMISSIBLE TOPOLOGY.
Cortain well known classes of spaces € that carry admissible topologies can
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be proved not to contain orthomodular specimen; we refer to [9]. Here we
mention but one result ([9, p. 20]); it has been crucial on the road to
Keller’s discovery. The idea of its proof is used again in the proof of
Theorem 17 below.

THEOREM 13 (Gross-Keller). Let k be a non archimedean ordered field
and equipped with its order topology; let < , > be a definite symmetric
form on the k-vector space €. Equip € with the norm topology

1 1

(lx]: = <z, )2 ek?).

Assume that & contains at least one orthogonal family (e),.n that is
bounded, i.e. for suitable o, Bek

(6) 0<a<ey,e) <P (EN)

III. KELLER’S EXAMPLE

The authors of [9] lamented about the “irksome” condition (6) which,
indeed, need not be satisfied (loc. cit., p. 89). Keller finally noticed that (6)
pointed at the very crux of the matter. He considered the transcendental
extension k, = Q(X)),ny With the unique ordering that has X, > ¢ for all
geQ and X! < X;,, for all i and all n; then he let k be the completion
of k, by means of Cauchy sequences. € is the linear k-space of all
(V)ien € kKN such that ) y?X; exists (addition and scalar multiplication com-

N

ponent wise) and {(V)ien, (Zdieny: = D, y:iz;X;. Original and ingenious argu-
N

ments given in [18] establish orthomodularity of €. (This also follows from
our Theorem 36 below.) |

Gross noticed that Keller’s construction works for valued fields ([6, 7, 20]).
An example is also contained in [14, p. 237]).

Keller’s choice of a field over which one can build orthomodular spaces
has been good: as our results show his space exhibits the typical properties
of an orthomodular space with an admissible topology (cf. Remark 29 below).
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IV. THE FUNDAMENTAL INEQUALITIES IN DEFINITE SPACES

[V.1. *-VaLuaTions (cf. [14]). Let (k, *) be an involutorial division ring
and T a totally ordered (additively written) abelian group. A surjective map

(7) ¢:k—>T(){} (a+oo=c0 forall ael'|J{oo})

is called *-valuation iff (i) @(x +y) = min{o(x), e(»)}, (i) P(xy) = @(x) + ©(y),
(iii) p(x) = o0 <> x = 0, (iv) ¢(x) = @(x¥).

The set of all U,: = {xek|o(x) > ¢}, eI, is a neighbourhood basis
for a division ring topology on k. In general we think of (k, *) as equipped
with this topology.

IV.2. THE INEQUALITIES. Assume that char k # 2 and that the valuation
in (7) has ¢@(2) = 0 (cf. Remark 35). Let { , > be a hermitean form on a
k-space €. Assume € non-degenerate (€ =(0)). Recall that we write “{x)” for
(x, %), x € €. It 1s useful to know a proof for the following fact

LEMMA 14 ([20]). The following four statements are equivalent
(i) Vi, pe€:oelx+y) = min{olx), e{y)>} (triangle inequality)

(i) Ve,pe€:{(x,p) = 0=0x+y) = min{e{x), e<{n)}
(“Pythagoras”™)

(i) Vz pe€: @<z, ) = min{ex), o{n)d} (“weak Cauchy-Schwarz”)
(1v) Vx,pe€: 20z, p) = ox> + 0<{y) (“Cauchy-Schwarz”)

( Notice that each statement implies anisotropy of €).

Proof. (i) = (ii): Let x L vy and
oCx) < <95 @<x) = 92x) = @{(x+)
+ (x—1)> = min{edx+9), px—9>} = e{x+1) > o<x).
(i) = (iv): Assume x # 0 # y. Pick b in the span of x, p such that
x=D0b+ iy, bLly; 20<{x19) = 2¢<b+Ay, 9) = 20<{\y, )
= 20(M) + 20<n> = e<{Ay) + ¢<y) = o<x) + ¢<y).
(1v) = (ii1): trivial

(111) = (i): straight forward. O
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IV.3. THE CLASS & OF DEFINITE SPACES. Positive definite forms over
ordered fields satisfy the triangle inequality as well as the Cauchy-Schwarz
inequality. We therefore set down

Definition 15. A definite space is a nondegenerate hermitean space
(€; {, >)over an involutorial division ring (k, *), char k # 2, that is equipped
with a *-valuation ¢ that has @(2) = 0 (cf. Remark 35) and that satisfies
one (and hence all) of the four statements in Lemma 14. A definite
space € will always be considered as a topological vector space, the topology
being given by the zero-neighbourhood basis U.: = {n e €| e<y) > y},yeT.
If (e 18 any family over vectors in € such that the net of all finite

(“partial”) sums ) e, has a limit x in € then we write x = ) ¢, and call
lel
(e ey SUummable.

LEMMA 16. Let (e),; be an orthogonal family in the definite space
€;<{, > and § its span. For each x in the topological closure of ¥
we have x = ) (x,¢> (e, te,.

el
Proof. Let 2 be the set of all finite subsets of I. For Ve 2 we set

¥y =y, (x ¢ (e 'e,. We have to prove that for each yeT there is
eV

Ue? such that o{(x—zx,) = ¢ for all V with U c Ve 2. Now there is
pe  with o(x—py) > & Pick Ue ? withgpespan {e, |1e U}. f U =« Ve?
then x — x, L x, — vy, so by “Pythagoras” (Lemma 14 (ii)) we obtain
e < ¢x—1y) = min{ex—x), ey =)} < OE—%y). O

V. NECESSARY CONDITIONS IN & FOR L. = L, |
‘The principal result of this section is

THEOREM 17 ([20]). Let € be an infinite dimensional definite space
carrying an admissible topology i.e., the topology mentioned in Definition 15 is
admissible in the sense of Definition 1 ; let furthermore (e),.; be an orthogonal
family in € such that (9{e))e; has a lower bound in T. Then
Y e, exists.
lel

Proof. Let &: = span {{e,> ‘e, — {eo> 'eo|rel}. We first wish to |
show that {e,> !¢, is not an element of the topological closure § Indeed, hd
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if v is a lower bound of (¢p<{e)) and if we let x: = } NN

1eU
— (ey> tey) be a typical vector of & (U some finite nonvoid subset of

1\{0}) then we get the inequalities
plr—<eoy Ty = @{(—1 —ZKL)<90>_ feg + Z M<e> le

= min {20(—1 =)~ 0<e0), 20() —9<er>)}

1eU
< 2min {p(—1-Y M) oA} —y < @(=1) —v = — 7.
teU U
Thus § # G.

Since '+ = F we have Ft # (0. Pick a non-zero xeF'; so
(x> (e> 7t = (x,e0)> (eoy~'. If we assume that (e),; is a maximal
orthogonal family then by L, = L, and Lemma 16 x = Y (x,¢,) {e;> ‘e

I

= (x,¢0) {eg> 'Y ¢, and thus ) e € ' If (¢)),, is not maximal then we
I I

write it as a difference of two maximal bounded families: Complete the given
family to a maximal orthogonal bounded family (e),.,, J = I, by Zorn’s
Lemma. For 1eJ let o;: = 1€k when tel and ao,: = 2 when 1e J\IL.
The two families (2e),c,, (0;¢),.; are bounded maximal families to which the
previous result may be applied. We get > e, = Y (2¢) — > e, e €. [
lel lel tel

CoroLLArRY 18. If € and (&), are as in Theorem 17 then

(e ey convergesto 0e E. O

CoroOLLARY 19. If € s as in Theorem 17 then the cofinality type
of T' is ®¢. In particular, the topology on € satisfies the first
countability axiom. O

CorOLLARY 20. If € is as in Theorem 17 then all orthogonal families
of non-zero vectors are countable.

Proof. Let (e)),; be such a family; by multiplying ¢, by a suitable
scalar, if necessary, we may assume (p<{e,>),.; to be bounded below. Since
). ¢, exists by Theorem 17, the sets I = {1el]|@{e;) < v} are finite for all

Lel

veI. Let (;)ien be confinal in I'. Then I = U {I, | ie N} is countable. []

Definition 21. The elements of the group I'/2I" are called types. Let
T'T - I'/2T be the canonical projection. T o @ is constant on the square
'l clisses of k (elements of k/kz) and T o ¢ o { } is constant on the “punctured”
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straight lines in E. A family (e),; of vectors in € is said to satisfy the
type-condition iff for all (o), € k! the following holds: if (@<oye, ) is
bounded (below) then (x¢,),; converges to 0 € E.

COROLLARY 22. Let € be as in Theorem 17. T'J2I" is infinite. Each
orthogonal family in € satisfies the type-condition, equivalently, T'/2T
satisfies (8 ) below. O

CoOROLLARY 23. Let & be as in Theorem 17. Then k is complete.

Proof. By Corollary 19 it suffices to show that a sequence (a;);n
with limit 0 € k is summable. Let (¢;),.y be maximal orthogonal in € with
(p<{e;))en bounded below. If (A)n € kN has (@(X)),ey bounded below then
(A:#))ien 18 summable and by continuity of { , > we obtain

< Z rie;, Z ;) = Z Aie;) .
N N N

Thus, all families (A;{e;>);cx With bounded (A,),.5 are summable.

Pick a strictly monotonic sequence (n,),.x € NN with u, = 0 and for all
ieN" and all m > n;: ¢o(a,) > @{e;), and set 4;: = > {o;|n; <j < myyq)
The family (4,),.x 1s summable if and only if (v;),.,y Summable and, if the
sums exist, these must be equal. If we set X;: = A4,{e¢;>” ! then, by what
we have shown, the family of the A; = A;{e;> is summable. ]

COROLLARY 24. Let & be as in Theorem 17. Then € is complete.

Proof. Let (x,),.n be a Cauchy sequence (Corollary 19). For each fixed
ne € the map x+ (y, ) is uniformly continuous. Hence by Cor. 23 the
map f:ylim {y, ;> is well-defined. As it is a continuous linear map,

1

its kernel is a closed hyper-plane and so (L(€) = L, (€)) there is ae€
such that f(y) = (%, a). Let N = N be infinite. Because lim ¢{y, a—x,> = ©
for all y e € it follows by systematic use of the Cauchy-Schwarz inequality
that {@{a—zx;>|ie N} is not bounded above by any yeI. Therefore
(x;);cn CONverges to a.

VI. SUFFICIENT CONDITIONS IN & FOR L, = L, |

VI.1. AssumpTiONS. In this chapter (€;( , >) is a definite space In
the sense of Definition 15. Of the base field k we shall furthermore assume j
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(cf. Corolllaries 22 and 23)
['/2I" contains a sequence (§; 4 2I'),.n such that each

(8) system of representatives (§;+27,),n that is bounded below tends
to oo.

(9) k is complete.

Thus, by (8), I'/2I' will be infinite and the topology on k will satisfy
the first countability axiom. There are many fields that satisfy (8) and (9):
See Remark 30.

The results in the next sections will culminate in Theorem 28 which
characterizes certain definite spaces that are orthomodular.

VI.2. CounNTING TYPES. Let € be the completion of an N,-dimensional
space ¥ which is spanned by an orthogonal basis 4 = (e,),.n that satisfies
the type condition (Def. 21). & is dense in € so §* = (0) and hence # is
maximal. By Lemma 16 we have therefore x = ) <x, ¢;> (¢;> 'e; for all

N

1eC.
We now introduce the function v which counts types on %. Let
vil[2I' > N:t>card {i e N | T o 0{¢;> = t} (cf. Def. 21). We have

LemMa 25. If fy,..,f. are pairwise orthogonal (non zero) vectors in
€ with Too@lf;) =tel/2I forall 1 <i<m then m < V).

Proof. We shall replace the f; by suitable multiples and assume that
oCfp =yelforall l <i<m LetJ: = {ieN|Toope> = t}. We have
i, =1 + f; where

f; = ;(fja e;) <ei>_1eia f}'3 = Z ir e e ley.

N\J

Since Lemma 14 (ii) generalizes to finite as well as to infinite sums we find
oCf;> = min {@{(f;, ;> <e;> " ted} # @<f;» (because types are different). By

ieN\J

Lemma 14 (ii) furthermore ¢{(f;> < O<F0, o<T> < @(f7> and we must
have equality in at least one instance. Therefore

(10) o = ofp =v<ofd, 1<j<m
Now, for i # j we find

2055, 15 = 205 =17, ;17> = min {20, 11>, 20<i7, i), 20477, 17>}
> min {@<T> + o<, <Fi) + olf), olff> + oD} > 2y
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so that
(11) ofi,f >y, 1<i#j<m

Thus f', .., ., are an almost orthogonal system in the v(t)-dimensional
space k(e);;. Assume by way of contradiction that the f; were linearly

dependent, ) wf; = 0 and not all p; = 0. Thus, for each
1

re{l,..m},0 =Y wdi, o

and so for each r

o<T + o) = o(— ; nicts, F.0) = m?in {ow) + o<f5 1o}
jFTr jFr
Therefore, by (10) and (11), ¢(p,) > min {@(u;} which tells that there is no
j#r
smallest @(p,) at all, a contradiction. Therefore, {1, ..,f, are linearly
independent and so m < v(t), QED. By Lemma 27 we thus obtain

COROLLARY 26. The function v that counts types on an orthogonal
basis of € is the same on all bases.

VI.3. THE TYPE CONDITION. Let € be the completion of a X,-dimensional
space & which 1s spanned by an orthogonal basis (¢;);,.n that satisfies the
type condition (Def. 21). , '

LEMMA 27. Let % = (), be a maximal orthogonal family in C.
Then % satisfies the type condition and x =) <{x,u; {w)> 'u; for all

N
x € €. In particular, the span of % is dense in €.

Proof. The assertion on the type condition follows directly from
Lemma 25. Let then z € €.

O<x u) Quy My = 2043, u) — olu) = @)
+ o<y — oy = @<x) .

Thus the family of vectors <z, u;> <u;,> "y, is bounded; in fact, it is a null

sequence as 4 satisfies the type condition, hence it is summable as €

is complete. Put p: = > <z u) {u;> " 'u;. We have {u;,p—x) = {u;,n)
N

—{u;,xy = 0,50 x —1pn =0 as # is a maximal orthogonal family. [J
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VII. THE MAIN THEOREM

We are now able to characterize the definite spaces whose topology is
admissible (Def. 1). Refer to Definition 21 for “type condition™.

THEOREM 28 [20]. Let € be a definite space in the sense of Definition 15.
The following conditions are equivalent

(i) L(€) = LyE) (cf. (1), (2), (3)
(i) L(€) = L, (€) (“the topology is admissible”, Def. 1)

(iii) k is complete and & is the completion of a N,-dimensional space
spanned by an orthogonal basis that satisfies the type condition.

Proof. (i) = (ii) holds trivially because Ly = L, , = L. by continuity of
the form; (ii) = (iii) was carried out in Chapter V. Just as in [18] we can
establish (iii) = (i). Let U € L (). Pick a maximal orthogonal family (v;),; in U
and extend it to a maximal orthogonal family (v),,, in € For xe€

we have by Lemma 27 x = ¥ + ¥” where ¥ = Z(z, p,> {p;> v, and
I

¥ =) {(x,0;) (0;> 'n;. Now ¥ eIl = 1. All that remains to be shown is
J

e U+, Now U* is closed so it suffices to show that v,e U+ for all
ieJ. To this end pick ue U and decompose u = u’ + u” (analogous to the
decomposition of x): " = u —u' el — U = U. Now <{u”,v;,> = 0 for all
ielsou” = 0 since (v;),,; 18 @ maximal orthogonal family. From

0 =u":=) <un) <o) 'y,
J

we obtain {u, v;> = 0 (ieJ). As u € i was arbitrary this says that v, e U* (ieJ).
Q.E.D.

Remark 29. Let the definite space € be the completion of § = k(e;);cn» (€:)n
an orthogonal family (that does not necessarily satisfy the type condition).
If k is complete then € is isometric to the k-space & of all sequences
(A)ien € KN such that li;n(2(pki+(p<ei>) = oo and equipped with the form

(), (1)) = 3 Mpde;). Indeed, the set & is a definite k-space and the map
N

Y:(h) > Y he; is a well defined isometry & — W(F) = €. By the “infinite
Pythagoras” we have ker ¥ = 0; on the other hand, Lemma 16 shows that
¥ is also surjective.

Thus all definite spaces that carry an admissible topology are (by
Theorem 28) of the kind invented by Keller.
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Remark 30. By Theorem 28 the isometry type of a definite space with
admissible topology is characterized by the sequence ({e;»);.x Where (e;);n
is a maximal orthogonal family in €. Conversely, for each (o;) € kN there is a
definite space € with L(€) = L(€) admitting a maximal orthogonal family
(e)ieny With (e;> = a; (ieN) provided that

(A) &;: = oo; eI satisfies the (type-) condition expressed in (8)

(B) The form ( , ) defined on F: = k(e)ien by <e;,¢;> = 0 (i#j),
(e;> = a; (ieN) 1s definite.

These two conditions are implemented by many fields. In order to satisfy
(A) one may, e.g. pick fields of generalized formal power series that are
complete under a valuation ¢ with group I' a prescribed Hahn product
[30, p. 31] with sufficiently many factors not 2-divisible, eg. I' = ZM
ordered antilexicographically. Let k be any field with (A) and teI/2l;
set &, = {spane;| oo; + 2I' = t}. By (A) dim &, < oo; furthermore

¥ =@ {§ltel)2l}.

In order to check whether the form ¢ , ) satisfies the triangle inequality on &
it suffices to verify said inequality on each &,. A. Fassler has given a handy
criterium for ¢ , > to be definite if Hahnproducts I" are used, as indicated,
to construct k with (A), [6, Lemma 15, 16].

VIII. APPENDIX: EXTENDING THE MAIN THEOREM TO THE CLASS &
OF NORM-TOPOLOGICAL SPACES

The arguments applied to the spaces in the class £ can be extended to
a larger class &. First we have (cf. Definition 15):

Definition 31. An infinite dimensional anisotropic quadratic space
(€; <, >) over a *-valued field (k, *, @, I') is called norm-topological if the
sets W1 = {xe €| @{x) > vy} form a O-neighbourhood basis of a vector
space topology on €. Let & be the class of all norm-topological spaces.

Definite spaces are norm-topological, obviously.

A proper subgroup A of I' is convex (or isolated) if “0 < x < y & yeA”
implies “x € A”. If the subgroup A = T is convex then the factor group I'/A
is ordered by setting vy + A <6 4+ A iff y < 8 or y — 6 € A; furthermore,
@a:k = T/A U {0} defined by @,(x) = @(x) + A is a valuation (a “coarser
valuation”) which yields the same topology on k as o. A

P |
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In order to make the mechanism of types work in the context of norm-
topological spaces, ie., in order to salvage the statement of Corollary 26
in the new context, the concept of type has to be coarsened as follows.
For y e I' we introduce

(12) A(y): = {8el|VneN:n|d| < |y}
and
(13) O(y): = N A(y+29)

oell

Ify # 0 then A(y) is the largest convex subgroup of I' not containing y ([21]).

Remark 32. The group defined in (13) for y = @{e), e € €, represents yet
another possibility to introduce a “type” for the vectors in a definite space.
The fundamental property expressed in Lemma 25 can be replaced and
reproved (along the same lines), cf. [21]:

(14) If U is a convex subgroup in I' and (e¢;)n, (f)n are two maximal
orthogonal families in a norm-topological space that satisfies (iii) in
Theorem 28 then

card {ie I | ©(p<e;> = U} = card {j e N| O(p(f;») = U}.
# #

One has the following analogue of Lemma 14:

Lemma 33. ([21]). Let (€;<, >;,I,*) be a norm-topological space
and  ©(2) = 0 (cf. Remark 35 below). Then there is a valuation &:k
> T U{w} coarser than ¢ such that the following holds: Either
€, ¢, >;,T,% is a definite space, in the sense of Definition 15, or else
there are no analytically nilpotent elements ack (ie, for no o # 0

shall we have lim o" = 0) and then the following weakened versions of the
N

Statements in Lemma 14 hold :
(1)) Pp<x+1) > min {P,<{x), a<v>}
1) ¢x) < Py & (x, 9> = 0= §Ax) = §ox+1)
(i) §<x, ) > min {PaCx), Paln>}
)

(V) 204<x, 1) = Pax) + §4<0)
where A = O(¢<x)) and A = OH{(x)) N OG(nD).
The inequalities in Lemma 33 suffice to salvage all results proved

prev1ously on definite spaces; in particular we have the following strengthen-
__ing of Theorem 28 (cf. Remark 35 below):
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THEOREM 34 [21]. Let € be a norm-topological space in the sense of
Definition 31 and assume @(2) = 0. Then the statements (i), (ii), (iii)
in Theorem 28 are equivalent.

Remark 35. In Definition 15, Lemma 33 and in Theorem 34 we stipulated
that ¢(2) = O for the valuation ¢ of the base field. However, it is neither
necessary to assume this nor that char k be different from two. As technica-
lities increase if 2 is not a unit for ¢ the general case has been banned
from this elementary survey. Refer to [21].

IX. APPENDIX: ORTHOMODULAR SPACES OVER ORDERED FIELDS

A Baer order of a *-field k is a subset Il = S: = {aek|o = o*} with
lell, 0¢II, T + IT < II, Yo # 0:alla* < I, —IT U IT = S\{0}. ([14]).
The map ar— a*a = : || o | has the properties of a norm and defines a
topology on k; if * is continuous then k is a topological *-field [14,
Theorem 4.1, p. 231]. The theory of positive definite orthomodular spaces
over archimedean ordered fields is settled in [9]: There are but the classical
Hilbert spaces over R, C, H. If the order is non-archimedean we shall assume
that

(15) the subgroup S generated by all a*o~ ! is bounded.

There is [14, Sec. 4.5, p. 234] a valuation on k that induces the norm-
topology. We remark that the boundness condition on S is always satisfied
for the usual orderings on commutative fields, for Prestel’s semi-orderings
and for all *-ordered fields that are known hitherto.

A family (e,),; of vectors in a positive definite space (€; { , )) over an
ordered *-field k is said to satisfy the type condition (cf. Definition 21)
iff for all (o), € k' the following holds: if ({oye,>he; is bounded then
(oyey)ie; converges to 0 e €.

With this version of type condition we have

THEOREM 36. Let (€;<{ , >) be a positive definite space over a non-
archimedean ordered *-field that satisfies (15). Then the statements (i), (ii),
(iii) in Theorem 28 are equivalent.
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X. CLIFFORD ALGEBRAS OF ORTHOMODULAR SPACES

X.1. AssuMpTIONS. In Chap. X k is a commutative field of characteristic
not 2 and ¢ , ) is a symmetric bilinear anisotropic form € x € — k on the
k-vector space €.

C(€) is the Clifford algebra of (€;  , >);itis a k-algebra that contains
the space € as a set of ring generators which satisfy x-n + p-x = 2{x, ).
For any pair of elements ¢, d € C(€) there exists a finite orthogonal family
¢, s &, in € such that ¢ = Y oye;,d = ) PBe;; here the summation index [

I

runs over all subsets

= {1, <..<y} of {0,1,.,n} and ¢ = ¢ + ... - ¢, ; the empty
product e is the unit element in C(€).
There is a canonical symmetric bilinear form ¢ , > on C(€) which extends

the given form on € ([5, 11, 227). One has

(16) ,d) = ; o B, H Ceys e

1el

1'612

From now on we shall assume that (€; < , >) is an infinite dimensional
definite space.

X.2. CLIFFORD ALGEBRAS OF DEFINITE SPACES. In [6] Angela Fassler has
proved that for certain definite orthomodular spaces € the algebra C(€) 1s
a skew field ; furthermore, the k-vector space C(€) equipped with the form (16)
is a definite space whose completion C(€) is orthomodular again. Furthermore
C~((E) 1s a skew field, in fact, a *-valued field with * the extension to
C(€) of the main antiautomorphism of the Clifford algebra C(€); the residue
class field of C(€) is isomorphic to the residue class field of .

In the following theorem we prove the main fact in a simplified and slightly
more general setting.

THEOREM 37. Assume that in the definite space (€; < , >) each ortho-
gonal family e, .. e, has

(17) o<lepy + .. + ¢<e,> ¢2I
Then :

() C(€) equipped with the form in (16) is a definite space,
() C(€) is a division ring,
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(iii) Themap ¢:C(€) > T U {0} defined by ¢ — @{c) isa *-valuation
for * the main antiautomorphism of C(C).

Proof. (1) It suffices to prove the triangle inequality (Lemma 14 (i)).
Write ¢ = ) aye;, D = > Be; as in X.1. Then we have @dloe;> # @(Be,)
for I # J and a # 0 # B. Hence

o) = (PZ<°‘IQI> = mIin {o<ae)}
and similarly for @<{d). Therefore
e{c+Dd) = (PZ {(o;+Bp)e;y = min {2(9(0‘1‘*‘[31) + (P<el>}

> min {200; + @<¢;, 20B; + @<e;p} = min {@{c), <D} .

This proves (i). Next we show
(18) ey = o) + <)
Indeed, from
Ceprey = (ELenpequmunny = Cernm*Ceaomuanny = e« ey
we see that
oy ep) < PLayer) & OBy ey < 9LByes)
implies
oo, By, e, e < oy Brese;) . !
We therefore pick G, H < {0, ..., n} such that for all I <= {0, ..., n} we shall have

plages) < OLaser, O Puey) < O(Prep .

It now follows that

e D) = (P<(Za1e1)'ZBJQJ> = (P<ZOCIBJQIQJ> = @<{usBuecen
+ Z,“IBJQI"—J> = @<agPuecen) = 9Ly + @<D).

Thus (18) is established.

From (18) it follows that C(€) has no zero divisors, hence C(€) is a
division ring (being an inductive limit of finite dimensional algebras). The map
:C(€) > ' U {00} as defined in (iii) of the Theorem is a *-valuation, 1
for ®(c*) = @(c) is obvious and everything else has been established already.ﬂ
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COROLLARY 38. Assume that the definite space (€; , )) is complete
and that the system of types (Corollary 26) is linearly independent in
[/2 (considered as a Z,-vector space) then the conclusions (i), (ii), (iii)
of Theorem 37 hold.

C(€) in Theorem 37 is not complete (unless finite dimensional). Its
quadratic form ¢, > can be extended to the completion C. By using

Theorem 28 one can see that this completion has L, ,(C) = L(C) if and only
if E has L, ,(E) = LJ(E).

XI. CONTINUOUS OPERATORS ARE NOT ALWAYS BOUNDED

XI.1. INTRODUCTION. Let € be an infinite dimensional definite space
in the sense of Definition 15. A linear map (operator) h: € — € 1s called
bounded iff there exists ye I such that for all xe & we have o@{hx)
27+ 0x).

In [6] A. Fissler gave an explicit example of a continuous operator
h on an orthomodular space € that is not bounded; she also proved a
criterion for boundness which is very useful in the study of the algebra
A(€) of bounded operators h: € - € when € is an orthomodular definite
space of a certain kind. We shall prove this criterion anew here as its
original proof can be shortened considerably.

We shall consider definite spaces that satisfy

(19) (€; {, ») contains a maximal orthogonal family (e,)y such that the
groups O(¢(e;») are different.

By (14) we see that (19) is a property of € not of (e)y; Keller’s
original example of an orthomodular space satisfies (19).

X12. FAssLErR’S CRITERION. In this subsection let (€;< , }) be an
infinite dimensional orthomodular space that has (19). Fix a maximal

orthogonal family (e)y that enjoys (19). If f: G — G is given, expand
(Lemma 27)

(20) fei= 3 oye;  (ieN)

JjeN

THEOREM 39 ([6]). The linear map f is bounded iff it is continuous
L (nd satisfies




|
|
}
i
[
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(21) {oo; | T o{fe;y = T o<e;)} is bounded below.

The heart of the proof of Theorem 39 is the following consequence of
assumption (19).

LemMMmA 40 [6]. If f is continuous then (19) implies that the set
It = {ieNJo{fer) < ¢le) & o{fe) # o<e;) (mod 2I)} s finite.

Proof. We renumber the e; such that O(pde;>) = O(ple; ., >). If we
at

replace e; by a multiple then its group does not change; therefore we may
assume without loss of generality that for all r, s € N we have

(22) r<s=0{)e0(pe)), ) =0

From (22) we obtain that for all r, s e N

- (23) r<s=VYoel:pdle) <|ople,y + 20|

If iel then @{fe;) = p{e;» for some j # i Let I, = I be the subset
of those i for which the j is smaller than i. Thus, if ieI\I, then
o fe;) = ole;p + 20u; < ©<e;»; so by (23) we must actually have
o{fe;) < —p<e;» < 0. Since (¢;) is a null sequence we see that I\I, has
to be finite (because {fe;|ie I\I,} must also be a null sequence if I\I,
is infinite). Thus, in order to prove Lemma 40 we have to show that I,
is finite.

The idea in [6] ist to show that for each ie I, there is A, €k such
that @{f(Ae;)) < 0 and @{Ae;) = 0 so that by the same token I, must
be finite. This is accomplished by choosing, in turn, A = 1, A = {fe,> "}
according as to whether @{ fe;> is < 0, > 0 respectively.

Proof of Theorem 39. Assume that f is bounded. Continuity is obvious.
Let y e I be a bound for f and let y, = min {0, y}. Now o{(fe;> = o{oye;)
for all i ocurring in (21), i.e, for all i e N\I (by assumption (19) we have
Tode,) # To<e;» for all i # j). Thus, if @a; > 0 then trivially @oy; > vo;
if pa; < 0 then (o) > 290, = v 2 vo.

Assume conversely that f is continuous and has (21). We show that
there is vy, € I’ with @{fe¢;> = v, + 9©<¢;> (ieN). Let y be a lower bound
for the set in (21) and set yo: = min {0, 2y, v, .., v,} Where v,: = o{(fe,)
— @{e,»,vel. To finish the proof we conclude @< fx) > @<{x> + v, (V3)
by continuity of f:

cp<f§ Ee> = 0S(Eeind) = Yo + 0t = To + OCE) .
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XII. THE CLOSED GRAPH THEOREM

Let € & be definite spaces in the sense of Definition 15 over a field k
whose valuation topology satisfies the 1. axiom of countability. For
f:€ > & a linear map set G(f): = {(x,9)eCD F|py = f(x)}. Then [21]
the “closed graph theorem” can be proved by classical methods (Baire

category arguments):

(24) ®(f) is closed = f is continuous .
There is the following algebraic analogue of statement (24):

(25) G(f) = G(f)*+ = fis L-continuous

L
Here ®(f)*+ is taken in € @ & and, by definition, f is L-continuous

iff f is continuous with respect to the topologies on € and § whose
0-neighbourhood filters are generated by the orthogonals of all finite dimen-
sional subspaces of € and § respectively. For € an orthomodular space
implication (25) holds: &(f) = G(f)** implies that &(f) is closed since the

L
form is continuous on € @ F; so f is continuous by (24). Further, if

® < § is the orthogonal of a finite dimensional subspace then f~}®)
is closed, hence f~(®) = (f ~(®))** as € is orthomodular. But (/' ~'(®))"
is finite dimensional, hence f is 1 -continuous.

In [31] nice examples of f: €& — § are given which illustrate that (25)
is in general violated.

XIII. A FEW OPEN PROBLEMS
All orthomodular spaces are meant to be infinite dimensional and
different from the classical ones over R, C, H.

Problem 1. Are cardinalities of maximal orthogonal families in an
orthomodular space always equal? The answer is “yes” for those in &.

Problem 2. Give an example of an orthomodular space that contains
an uncountable orthogonal family of non-zero vectors.

Problem 3. Does the implication

A+ B = (U+B)L = A+ + BL = (ANB)*




210 H. GROSS AND U.-M. KUNZI

hold for all pairs of L-closed subspaces AU = A+ B = B+ in an ortho-
modular space? The answer is “yes” for orthomodular spaces in &. Cf
Remark 3 in [31]. More generally, are there other elementary lattice theoretic
statements (in the sense of first order logic) that are valid in all L, (E)
where € 1s orthomodular?

Problem 4. Are there spaces € in 2, & with L(€) = L, (€) < L/(C)?

#
Problem 5. An orthomodular space € in & is never isometric to any
of its proper subspaces X, although it does happen that € is similar to a
proper subspace X. However, Keller’s space is not similar to any of its
proper subspaces. Give an intrinsic description of the phenomenon. (See [21].)

Problem 6. Answer Keller’s question in § 3 of the introduction: When is
{A} commutative for selfadjoint A in the algebra #%($) of bounded
operators  — 9H?

Problem 7. Let € be an orthomodular space in & or & such that
the types of the members of a maximal orthogonal family are all different.
Let A be the (countable) set of these types. For each choice of a family (A;);ca
of nonnegative real numbers with ) A; = 1 there is a probability distribution

A

fi:L,(€) - [0,1] = R uniquely defined as follows: for Xe L, (€) set

f(X): = > X\; where the subset J = A consists of the types of the members
ieJ

of any orthogonal basis of X. We have f(€) = 1, f(0) = 0, O X)) = Y f(¥)

for any countable family X,, X,,.. of mutually orthogonal (Ll-closed)

subspaces. These are by no means all probability distributions on €. There

is a host of other possibilities. Can one bring some order into this

multitude ?

Problem 8. Classify the definite spaces with admissible topology over
fixed base field.

Problem 9. Study the orthogonal group of definite orthomodular spaces.
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