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L’identité

o 1} |1 1 1 0
-1 0o [0 1 11
montre que toute forme antisymétrique, unimodulaire provient d’une forme

de Seifert unimodulaire.
Pour toute la suite nous nous plagons donc dans le cas ou € = +1.

2. LE CAS INDEFINI

Si S est symétrique, indéfinie, c’est-a-dire s’il existe un vecteur xe R Q L,
non nul, tel que Si(x,x) = 0, on dispose encore d’une classification.
(Voir [H.-M.], ou [Se], Théoréme 5, p. 93.) Dans ce cas, S représente en
fait 0 sur Z, c’est-a-dire il existe x € L. non nul tel que S(x,x) = 0, et
(aprés changement de signe éventuel) S est isomorphe a une somme ortho-
gonale

S=mH&®nlgy, m=>1,

ou H est le plan hyperbolique (symétrique cette fois) donné par la matrice

w=[3 3]

et ou I'y est la forme unimodulaire entiére de rang 8 définie comme suit:

S%it Z% le Z-module des points de coordonnées entiéres dans R®
= ).._, Re; muni du produit scalaire euclidien x .y = Z?: . Xi - yi- On pose
a=¢e; +e,+ ..+e et b=73a Soit V, le sous-module de V = Z8

formé des points dont le produit scalaire avec b est entier
Vo ={xeZ®|x.bel}.

On définit alors 'y = V, + Zb. C’est un réseau entier, pair et unimodulaire.
(Voir [H.-M.] ou [Se] pour les détails.)
& On a déja vu que la forme hyperbolique




176 M. KERVAIRE

0 1
H =
1 0
ne provient pas d’une forme de Seifert unimodulaire. On va voir que pour
les formes indéfinies c’est la seule exception.

PRrROPOSITION 1. Toute forme S symétrique entiére paire, unimodulaire,
indéfinie et de rang > 2 provient d'une forme de Seifert unimodulaire,
c’est-a-dire peut sécrire S = A + A" avec A entiere et dét(A) = +1.

Preuve. Comme S, apres changement de signe éventuel, s’écrit S = mH
+ nI'g par le théoréme de classification, il suffit de vérifier I’assertion pour
mH m = 2,3, TgetH + Ig.

En notant I la matrice unité de rang m, on a

g0 1o -x] [0 X
TEEAr ool T olx o I-x 0

et on voit qu’il suffit de trouver X € GL,(Z) tel que I — X soit également
inversible sur Z. Il existe des matrices de ce type pour tout m = 2. En
particulier pour m = 2, 3 on peut prendre par exemple

0 —1 0O 1 1
X = X = 0 0 -1
1 1 -1 1 1

La matrice de I'g, pour une base convenable, est

l |
SO OO~ N
l |
|

S O O O = N = O
|
O O O = N = OO

|
O RN - OO0 0O
|

II\JOO*—‘OOOOJ

O o= O O O O O

I
—_ O =N = OO O

O OO OO O =

Cette forme provient donc trivialement d’une forme de Seifert uni-
modulaire A. Il suffit de prendre A4 trigonal supérieur avec 1 sur la dia-
gonale et les coefficients de I'g dans le triangle supérieur.

Pour H + I'g, on peut prendre
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0 1 1 0 0 0 0 0 0 O
O 0—-1 0 0 0 0 0 0 O
1 1 1 -1 0 0 0 0 0 O
o 0 0 1—-1 0 0 0 0 O
O 0 0 0 1 -1 0 0 0 O
A= O 0 0 0 0 1 -1 0 0 O
o 0 0 0 0 0 1 -1 0-1
O 0 0 0 0 0 0 1 —1 0
O 0 0 0 0 0 0 0 1 O
|00 0 0 0 0 0 0 0 1

On va voir que le cas des formes définies est beaucoup moins trivial.

3. LE CAS DEFINI

Nous considérons maintenant les formes symétriques entieres unimo-
dulaires, paires, définies positives.

Comme on sait, le rang de la forme est alors un multiple de 8, et
on ne dispose plus de classification complete que pour les rangs 8, 16 et 24.
Je n’ai dans ce cas que des résultats expérimentaux fragmentaires.

On va d’abord reformuler le probléme original & I'aide du lemme bien
connu suivant:

LEMME. Soit S wune forme bilinéaire symétrique unimodulaire et paire
sur le Z-module libre de rang fini L. Alors, il existe une forme bilinéaire
unimodulaire A:L x L - Z telle que S = A + A’ si et seulement si S
posseéde une isométrie t:L — L telle que 1—t:L — L est un isomorphisme.

Preuve. S1§ = A + A" avecdét A = 11, alors on peut définir t: L — L
par

A(tx, y) = — A(y, x) .

On a A(tx, ty) = — A(ty, x) = A(x, y). Ainsi ¢t est une isométrie pour A
et donc aussi pour S. On a en outre

S(x, y) = Alx, y) + Ay, x) = A((1-1)x, y),

Cc qui montre que 1 —t est inversible sur Z.
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