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L'identité
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montre que toute forme antisymétrique, unimodulaire provient d'une forme

de Seifert unimodulaire.
Pour toute la suite nous nous plaçons donc dans le cas où s +1.

2. Le cas indéfini

Si S est symétrique, indéfinie, c'est-à-dire s'il existe un vecteur x e R ® L,
non nul, tel que SR(x, x) 0, on dispose encore d'une classification.

(Voir [H.-M.], ou [Se], Théorème 5, p. 93.) Dans ce cas, S représente en
fait 0 sur Z, c'est-à-dire il existe x e L non nul tel que S(x, x) 0, et

(après changement de signe éventuel) S est isomorphe à une somme orthogonale

S mH © n r8 m ^ 1

où H est le plan hyperbolique (symétrique cette fois) donné par la matrice

et où r8 est la forme unimodulaire entière de rang 8 définie comme suit :

Soit Z8 le Z-module des points de coordonnées entières dans R8

Zi 1
Ré>; muni du produit scalaire euclidien x y xt. yt. On pose

a ei + e2 + - + et b \a. Soit V0 le sous-module de V Z8
formé des points dont le produit scalaire avec b est entier :

V0 {x g Z8 | x b e Z}

On définit alors T8 V0 + Zb. C'est un réseau entier, pair et unimodulaire.
(Voir [H.-M.] ou [Se] pour les détails.)

On a déjà vu que la forme hyperbolique



176 M. KERYAIRE

H
"0 1"

1 0

ne provient pas d'une forme de Seifert unimodulaire. On va voir que pour
les formes indéfinies c'est la seule exception.

Proposition 1. Toute forme S symétrique entière paire, unimodulaire,

indéfinie et de rang > 2 provient d'une forme de Seifert unimodulaire,
c'est-à-dire peut s'écrire S A + A' avec A entière et dét (^4) ± 1.

Preuve. Comme S, après changement de signe éventuel, s'écrit S mH

+ n r8 par le théorème de classification, il suffit de vérifier l'assertion pour
mH, m 2, 3, T8 et H -f T8.

En notant / la matrice unité de rang m, on a

0 / 11o r~0
1

io
1

+
i 1 0

1J °_

et on voit qu'il suffit de trouver X e GLm(Z) tel que I — X soit également
inversible sur Z. Il existe des matrices de ce type pour tout m ^ 2. En

particulier pour m 2, 3 on peut prendre par exemple

0 -1 "011
X 1oo

1 1 -1 1 1

La matrice de T8, pour une base convenable, est

2 -1 0 0 0 0 0 0

-1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 0

0 0 -1 2 -1 0 0 0

0 0 0 -1 2 -1 0 -1
0 0 0 0 -1 2 -1 0

0 0 0 0 0 -1 2 0

0 0 0 0 -1 0 0 2

Cette forme provient donc trivialement d'une forme de Seifert

unimodulaire A. Il suffit de prendre A trigonal supérieur avec 1 sur la

diagonale et les coefficients de T8 dans le triangle supérieur.

Pour H + r8, on peut prendre
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0 1 1 0 0 0 0 0 0 o"

0 0 -1 0 0 0 0 0 0 0

-1 1 1 -1 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 0 0 1 -1 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 0 0 1 -1 0 -1
0 0 0 0 0 0 0 1 -1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

On va voir que le cas des formes définies est beaucoup moins trivial.

3. Le cas défini

Nous considérons maintenant les formes symétriques entières unimo-
dulaires, paires, définies positives.

Comme on sait, le rang de la forme est alors un multiple de 8, et

on ne dispose plus de classification complète que pour les rangs 8, 16 et 24.

Je n'ai dans ce cas que des résultats expérimentaux fragmentaires.
On va d'abord reformuler le problème original à l'aide du lemme bien

connu suivant :

Lemme. Soit S une forme bilinéaire symétrique unimodulaire et paire
sur le Z-module libre de rang fini L. Alors, il existe une forme bilinéaire
unimodulaire A : L x L -+ Z telle que S A + Ä si et seulement si S

possède une isométrie t: L — L telle que 1 — t : L — L est un isomorphisme.

Preuve. Si S A 4- A' avec dét A ± 1, alors on peut définir t\ L L
par

A(tx, y)- A(y, x).

On a A(tx, ty) — A(ty, x) A(x, y). Ainsi est une isométrie pour A
et donc aussi pour S. On a en outre

S{x, y) A(x, y)+ A(y,y),
ce qui montre que 1 — t est inversible sur Z.
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