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174 M. KERVAIRE

monodromie ¢t: V — V de la fibration et i, et i_ot: ¥V = S?""1 — V sont
homotopes dans le complémentaire de V. On a donc

A(X, y) = l(xsl+(y)) = l(x>i~ty)
= 1(i+x, ty) = (=)™ 1(ty, i, x)
= (=" Ay, ) .

Ainsi, S(x, y) = A(x,y) + (—1)"A(y, x) = A((1—1t)x, y), et
dét S = dét(A). dét(l—1).

La forme de Seifert associée a la fibre d’un nceud fibré de dimension
impaire est donc unimodulaire.

Remarque. La formule ci-dessus montre aussi en passant que la mono-
dromie¢: L - L(L=H,( V)/(torsion)) satisfait 4 la condition dét (1 —t) = + 1.
Nous retrouverons cette condition dans le contexte algébrique qui va suivre.

Il est donc assez naturel de se poser le probléme suivant sur lequel
Claude Weber a attiré mon attention:

PROBLEME. Soit S une forme bilinéaire, unimodulaire, e-symétrique sur un
Z-module libre de génération finie L. Existe-t-il une forme A:L x L - Z,
unimodulaire (sans propriété de symétrie) telle que S = A + €A'?

On supposera évidemment S paire, Cest-a-dire S(x, x) = O mod 2 pour
tout x € L.

En considérant la forme de rang 2 donnée par la matrice

S 0 1
10
(et e= +1), on observe immédiatement que la réponse au probléeme ci-dessus
peut étre négative.
Pour ¢ = —1, ou pour ¢ = +1 avec § indéfinie, on peut résoudre

complétement le probléme posé en utilisant la classification des formes bili-
néaires, unimodulaires et e-symétriques.

1. LEcas e = —1

Dans ce cas, S antisymétrique est une somme orthogonale de plans
hyperboliques
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L’identité

o 1} |1 1 1 0
-1 0o [0 1 11
montre que toute forme antisymétrique, unimodulaire provient d’une forme

de Seifert unimodulaire.
Pour toute la suite nous nous plagons donc dans le cas ou € = +1.

2. LE CAS INDEFINI

Si S est symétrique, indéfinie, c’est-a-dire s’il existe un vecteur xe R Q L,
non nul, tel que Si(x,x) = 0, on dispose encore d’une classification.
(Voir [H.-M.], ou [Se], Théoréme 5, p. 93.) Dans ce cas, S représente en
fait 0 sur Z, c’est-a-dire il existe x € L. non nul tel que S(x,x) = 0, et
(aprés changement de signe éventuel) S est isomorphe a une somme ortho-
gonale

S=mH&®nlgy, m=>1,

ou H est le plan hyperbolique (symétrique cette fois) donné par la matrice

w=[3 3]

et ou I'y est la forme unimodulaire entiére de rang 8 définie comme suit:

S%it Z% le Z-module des points de coordonnées entiéres dans R®
= ).._, Re; muni du produit scalaire euclidien x .y = Z?: . Xi - yi- On pose
a=¢e; +e,+ ..+e et b=73a Soit V, le sous-module de V = Z8

formé des points dont le produit scalaire avec b est entier
Vo ={xeZ®|x.bel}.

On définit alors 'y = V, + Zb. C’est un réseau entier, pair et unimodulaire.
(Voir [H.-M.] ou [Se] pour les détails.)
& On a déja vu que la forme hyperbolique
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