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FORMES DE SEIFERT ET FORMES QUADRATIQUES ENTIERES

par Michel KERVAIRE

Une e-forme de Seifert, o ¢ = + 1 est une forme bilinéaire (en général
non symétrique) sur un Z-module libre L de génération finie

A:L x L > Z,

et telle que 4 + A’ soit unimodulaire, c’est-a-dire dét(4+¢€A4’) = + 1. Ic,
A'(x, y) = A(y, x) est la transposée de A.

Ces formes, considérées par H. Seifert [S], trouvent leur origine en
théorie des nceuds: Si X" < S"*? est un n-nceud, c’est-a-dire une sous-
variété lisse de S"*? homéomorphe (ou difffomorphe) a S”, il existe une
sous-variété orientable lisse, a bord, V"*! plongée dans S"*? dont le bord
coincide avec X". Une telle variété est appelée une surface de Seifert du
neud. Si n = 2m — 1 est impair, V est de dimension paire 2m, plongée
dans $?"*1! et aprés choix d’'un champ v de vecteurs (non nuls) normaux
a V dans S*™*! on peut définir des applications i,:V — S*™*! — V par
i.(P) = P + av(P) avec o > 0, petit et on obtient une forme bilinéaire

A:H, (V) x H (V) » Z

donnée par A(x, y) = I(x, i+(y)) Z, ou I(x, i.(y)) désigne le coefficient d’enla-
cement des m-cycles disjoints x et i,(y) dans S*" 1,
Un calcul facile montre que

A(X, y) + (__1)mA(y> X) = S(X, y) s

ou § est la forme d’intersection de la variété V. (Voir [K].)

En posant L = H,(V)/(torsion) on voit donc, par le théoréeme de dualité
de Poincaré, que A4 est une (—1)"-forme de Seifert sur L. Il suffit méme
pour cela que £ = b(V) soit une sphére d’homologie.

SI maintenant on suppose que le neud T~ ! < §2"*1 est fibre,
Cest-a-dire que le complémentaire S>"*! — 27~ 1! fibre sur le cercle S,
on peut prendre pour V 'adhérence d’une fibre. Le complémentaire du nceud
§¥"71 — % sobtient en recollant ¥ x {1} < ¥ x I avec V x {0} par la
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monodromie ¢t: V — V de la fibration et i, et i_ot: ¥V = S?""1 — V sont
homotopes dans le complémentaire de V. On a donc

A(X, y) = l(xsl+(y)) = l(x>i~ty)
= 1(i+x, ty) = (=)™ 1(ty, i, x)
= (=" Ay, ) .

Ainsi, S(x, y) = A(x,y) + (—1)"A(y, x) = A((1—1t)x, y), et
dét S = dét(A). dét(l—1).

La forme de Seifert associée a la fibre d’un nceud fibré de dimension
impaire est donc unimodulaire.

Remarque. La formule ci-dessus montre aussi en passant que la mono-
dromie¢: L - L(L=H,( V)/(torsion)) satisfait 4 la condition dét (1 —t) = + 1.
Nous retrouverons cette condition dans le contexte algébrique qui va suivre.

Il est donc assez naturel de se poser le probléme suivant sur lequel
Claude Weber a attiré mon attention:

PROBLEME. Soit S une forme bilinéaire, unimodulaire, e-symétrique sur un
Z-module libre de génération finie L. Existe-t-il une forme A:L x L - Z,
unimodulaire (sans propriété de symétrie) telle que S = A + €A'?

On supposera évidemment S paire, Cest-a-dire S(x, x) = O mod 2 pour
tout x € L.

En considérant la forme de rang 2 donnée par la matrice

S 0 1
10
(et e= +1), on observe immédiatement que la réponse au probléeme ci-dessus
peut étre négative.
Pour ¢ = —1, ou pour ¢ = +1 avec § indéfinie, on peut résoudre

complétement le probléme posé en utilisant la classification des formes bili-
néaires, unimodulaires et e-symétriques.

1. LEcas e = —1

Dans ce cas, S antisymétrique est une somme orthogonale de plans
hyperboliques
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L’identité

o 1} |1 1 1 0
-1 0o [0 1 11
montre que toute forme antisymétrique, unimodulaire provient d’une forme

de Seifert unimodulaire.
Pour toute la suite nous nous plagons donc dans le cas ou € = +1.

2. LE CAS INDEFINI

Si S est symétrique, indéfinie, c’est-a-dire s’il existe un vecteur xe R Q L,
non nul, tel que Si(x,x) = 0, on dispose encore d’une classification.
(Voir [H.-M.], ou [Se], Théoréme 5, p. 93.) Dans ce cas, S représente en
fait 0 sur Z, c’est-a-dire il existe x € L. non nul tel que S(x,x) = 0, et
(aprés changement de signe éventuel) S est isomorphe a une somme ortho-
gonale

S=mH&®nlgy, m=>1,

ou H est le plan hyperbolique (symétrique cette fois) donné par la matrice

w=[3 3]

et ou I'y est la forme unimodulaire entiére de rang 8 définie comme suit:

S%it Z% le Z-module des points de coordonnées entiéres dans R®
= ).._, Re; muni du produit scalaire euclidien x .y = Z?: . Xi - yi- On pose
a=¢e; +e,+ ..+e et b=73a Soit V, le sous-module de V = Z8

formé des points dont le produit scalaire avec b est entier
Vo ={xeZ®|x.bel}.

On définit alors 'y = V, + Zb. C’est un réseau entier, pair et unimodulaire.
(Voir [H.-M.] ou [Se] pour les détails.)
& On a déja vu que la forme hyperbolique
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0 1
H =
1 0
ne provient pas d’une forme de Seifert unimodulaire. On va voir que pour
les formes indéfinies c’est la seule exception.

PRrROPOSITION 1. Toute forme S symétrique entiére paire, unimodulaire,
indéfinie et de rang > 2 provient d'une forme de Seifert unimodulaire,
c’est-a-dire peut sécrire S = A + A" avec A entiere et dét(A) = +1.

Preuve. Comme S, apres changement de signe éventuel, s’écrit S = mH
+ nI'g par le théoréme de classification, il suffit de vérifier I’assertion pour
mH m = 2,3, TgetH + Ig.

En notant I la matrice unité de rang m, on a

g0 1o -x] [0 X
TEEAr ool T olx o I-x 0

et on voit qu’il suffit de trouver X € GL,(Z) tel que I — X soit également
inversible sur Z. Il existe des matrices de ce type pour tout m = 2. En
particulier pour m = 2, 3 on peut prendre par exemple

0 —1 0O 1 1
X = X = 0 0 -1
1 1 -1 1 1

La matrice de I'g, pour une base convenable, est

l |
SO OO~ N
l |
|

S O O O = N = O
|
O O O = N = OO

|
O RN - OO0 0O
|

II\JOO*—‘OOOOJ

O o= O O O O O

I
—_ O =N = OO O

O OO OO O =

Cette forme provient donc trivialement d’une forme de Seifert uni-
modulaire A. Il suffit de prendre A4 trigonal supérieur avec 1 sur la dia-
gonale et les coefficients de I'g dans le triangle supérieur.

Pour H + I'g, on peut prendre
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0 1 1 0 0 0 0 0 0 O
O 0—-1 0 0 0 0 0 0 O
1 1 1 -1 0 0 0 0 0 O
o 0 0 1—-1 0 0 0 0 O
O 0 0 0 1 -1 0 0 0 O
A= O 0 0 0 0 1 -1 0 0 O
o 0 0 0 0 0 1 -1 0-1
O 0 0 0 0 0 0 1 —1 0
O 0 0 0 0 0 0 0 1 O
|00 0 0 0 0 0 0 0 1

On va voir que le cas des formes définies est beaucoup moins trivial.

3. LE CAS DEFINI

Nous considérons maintenant les formes symétriques entieres unimo-
dulaires, paires, définies positives.

Comme on sait, le rang de la forme est alors un multiple de 8, et
on ne dispose plus de classification complete que pour les rangs 8, 16 et 24.
Je n’ai dans ce cas que des résultats expérimentaux fragmentaires.

On va d’abord reformuler le probléme original & I'aide du lemme bien
connu suivant:

LEMME. Soit S wune forme bilinéaire symétrique unimodulaire et paire
sur le Z-module libre de rang fini L. Alors, il existe une forme bilinéaire
unimodulaire A:L x L - Z telle que S = A + A’ si et seulement si S
posseéde une isométrie t:L — L telle que 1—t:L — L est un isomorphisme.

Preuve. S1§ = A + A" avecdét A = 11, alors on peut définir t: L — L
par

A(tx, y) = — A(y, x) .

On a A(tx, ty) = — A(ty, x) = A(x, y). Ainsi ¢t est une isométrie pour A
et donc aussi pour S. On a en outre

S(x, y) = Alx, y) + Ay, x) = A((1-1)x, y),

Cc qui montre que 1 —t est inversible sur Z.
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Réciproquement, s’il existe une isométrie t: L - L pour S avec 1—¢
inversible, on peut définir 4 unimodulaire par A(x, y) = S((1—t)~'x, y). En
posant s™' = 1—¢t, on a alors

S(s™'x,s7'y) = 28(x, y) — S(x, ty) — S(tx, y)
= S(x,s7'y) + S(s"x, ).
En substituant x et y pour s~ 'x et s~ 1y, il vient
S(x, y) = S(sx, y) + S(x, sy) = S(sx, y) + S(sy, x)
Alx, y) + Ay, x) ,

Il

et S provient donc d’une forme de Seifert unimodulaire.

Une isométrie t: L — L telle que 1 —¢ soit un isomorphisme sera appelée
une isométrie parfaite.

La question est donc: Quelles sont les formes symétriques paires, uni-
modulaires, définies positives qui admettent une isométrie parfaite?

Comme toute forme symétrique, définie positive est isomorphe d un réseau
de R" muni du produit scalaire euclidien canonique, nous écrirons x.y
au lieu de S(x,y) et x* au lieu de S(x,x) et nous supprimons S des
notations.

Soit donc L un réseau entier de R". Pour un entier donné ¢, on va
considérer l'ensemble fini X = X(c) de tous les vecteurs x e L tels que
x? = ¢. On notera ZX le sous-module de L engendré par X. Toute iso-
métrie de L conserve X et donc aussi ZX.

On dira que X est décomposable si X = X; u X, avec X{ n X, = Q,
les vecteurs de X, étant orthogonaux a tous les vecteurs de X,. On écrira
X =X,® X,. Lasomme ZX = ZX; ® ZX, est alors une somme directe
orthogonale. Il est clair que X sécrit de maniere unique sous la forme
X =X,0.. &X,avecles X;,i = 1, .., r indécomposables.

Bien entendu, X peut étre décomposable, méme si le réseau L est
indécomposable.

PROPOSITION 2. Soit L wun réseau entier de R". Soit X [Iensemble
des vecteurs de L de carré scalaire fixe donné et soit X = X, @ ... & X,
sa décomposition avec X; indécomposable. Si L posséde une isométrie
parfaite, il en est de méme pour chaque sous-réseau 2ZX;,i = 1, ..,r.

Preuve. 1l est évident qu’'une isométrie ¢t de L doit permuter entre eux
les facteurs X; (indécomposables) de la décomposition de X. Soit Y l'un
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quelconque de ces facteurs et soit e la plus petite puissance positive de ¢ telle
que t°Y = Y. Je dis que t*| ZY est parfaite.

< g1 -1 ; .
On considere le « carrousel » M = Zfzo Zt'Y. Cest un sous-module de L

conservé par t et t| M: M — M est donc parfaite. Soit x € ZY. Il existe un
¢lément

V= oy Y1y Yeur) €2, LY = M
avec y; € Zt'Y et tel que (1—1)y = (x,0, ..., 0).
On a en développant
Yo — Yooy =x, e y—ty,_; =0 pour i=1.,e— 1.

Par suite,

-2

Vee1 = Yooz = . = 72y =157 1yy, et x = (1—=ty,,

ce qui montre que 1—t*:ZY — ZY est surjective et t°| ZY est donc une
isométrie parfaite.

On peut appliquer la Proposition 2 dans le cas ou X est formé des
vecteurs de L de carré scalaire 2. Le systtme X est dans ce cas un
systeme de racines au sens de la théorie des groupes de Lie. Un tel systéme
est somme orthogonale de systemes indécomposables de I'un des types

A,,D,, E¢,E;, ou Eg.

Ces systemes sont décrits (entre autres) dans [N], 1.3, p. 145-146. Par
exemple, ZA, = {xeZ""!| Z:’: 11 x; = 0}, engendré par le systéme indé-
composable 4, = {e; — e;,i # j}.

PROPOSITION 3. Les réseaux ZA,,_, et ZD,., pour k> 1, ainsi
que le réseau ZE, ne possédent pas d’isométrie parfaite.
Preuve. Soit L < R” un réseau entier. On note
L* = {xeRL|x.yeZ pourtout yelL)}

le réseau dual. (On suppose RL = R")

Toute isométrie ¢t de L se prolonge en une isométrie unique de L*
¢t induit un automorphisme de L*/L. Si t: L — L est parfaite, il en est
de méme de 'extension t*: L* — L*, car

((l_t)_lx, y) = (X, y) - (x> (1_t)_1y)

¢t Pautomorphisme induit sur le quotient L*/L est donc aussi parfait.




180 M. KERVAIRE

Pour A,, on a (ZA,)*/ZA, = Z/in+1)Z. Si n = 2k — 1 est impair,
Z/2kZ possede un unique sous-groupe d’ordre 2 qui est donc laissé fixe
par tout automorphisme. Donc, le réseau ZA4,,_,, k > 1, ne posséde pas
d’isométrie parfaite.

Le méme raisonnement s’applique également au systéme E,: On a
(ZE,)*/ZE, = Z/)2Z.

Pour D,,n > 5, 0n a

VALY pour n impair,
(ZD,)*/ZD, =
Z)27 @ Z/2Z. pour n pair.

Le raisonnement ci-dessus suffirait donc encore pour n impair, mais pas
pour n pair. (En fait, on verra ci-dessous que D, posséde une isométrie
parfaite.)

Par définition, ZD, = {xe Z"| Zz;l x; = O0mod 2}, engendré par

= {4+ e + e;,i #j}. On vérifie (Voir [N], p. 149.) que (ZD,)*/ZD, est
engendré par les classes mod ZD, de y, = 0 et

Y1 :% :l=1e"’ Yo = ¢, et y3:%(2?=1 ei_en)'
Comme pour tout x € ZD,, on a
i+x)? = yi+ Lo X+ 1) >y = n/4,

et
(y3+x)? = y3+z 1x(x+1 + X x,—1) = y3 = n/4,

il s’ensuit que pour n > 4, la classe de y, mod ZD, est la seule classe de
(ZD,)* qui contient un vecteur de carré scalaire égal a 1. Cette classe doit
donc étre laissée fixe par toute isométrie de (ZD,)*, et il en résulte que
Z.D, ne posséde pas d’isométrie parfaite pour n > 4.

Nous obtenons donc le

COROLLAIRE. Un réseau unimodulaire pair L — R" dont le systeme R
des vecteurs de carré 2 se décompose en

R=A4, ,®R, ou R=D,,®K

avec k=1, ou R = E,® R ne posséde pas d’isométrie parfaite. La
forme définie positive qu'un tel réseau définit ne provient donc pas d’une forme
de Seifert unimodulaire.
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La premiére partie de I'énoncé vaut d’ailleurs pour les réseaux avec
dét (L) = 1.

On peut appliquer ce corollaire aux formes de basses dimensions.

En dimension 8, on a une seule classe d’isomorphie de réseaux pairs
unimodulaires, représentée par I's = ZEg qui posséde une isométrie parfaite
comme on I'a deja vu.

En dimension 16, on a 2 classes I's @ I'y et I';s qui correspond au
systéme de racines D,q. (L’ensemble des vecteurs de carré scalaire 2 dans
[y, forme le systéme de racines Eg pour n = 1 et Dg, pour n > 1)

Donc, d’apres le corollaire, I'; ¢ n’admet pas d’isométrie parfaite.

Dans [N], H.V. Niemeier classe les réseaux unimodulaires pairs en
dimension 24. Il existe un réseau (et un seul a isomorphisme pres) dont
tous les vecteurs non-nuls ont un carr¢ scalaire > 4. On verra ci-dessous qu’il
possede une isométrie parfaite. Il existe en outre 23 réseaux dont I’ensemble
des vecteurs de carré scalaire 2 forme un systéme de racines non-vide.
Ces réseaux sont chacun caractérisé par leur systéme de racines qui sont les
suivants:

A,y 2A,,,3A4q,4A,,6A,,124,,6D,,4E, et 3E,

pour lesquels on va voir que le réseau correspondant posséde une isométrie
parfaite ;

8A45,24A4,,D, @ 4A45,2Ds @ 245, Dg P 249, Dy D A, s,
4D673D8’2D12aD249
E6 @D7 @ A117E7 @ A17a2E7 @DIOsES @ D16

qui sont les systémes de racines de réseaux sans isométrie parfaite. (On a
nott nR = RO R @ ... ® R, n fois.)

La derniére assertion résulte du corollaire, puisque ces systémes contiennent
tous un facteur A,,_; ou D, avec k > 1.

Considérons le cas ou le réseau entier L — R" est de méme rang que
le réseau engendré par son systéme X de vecteurs d’une longueur fixée.
On a donc ZX = L = (ZX)* et L est unimodulaire si et seulement si
L* = L.

Pour qu’il existe une isométrie parfaite de L, il faut et il suffit quau
moins une isométrie parfaite de ZX qui, comme on I'a vu, se prolonge
de maniére unique a (ZX)*, préserve L.

Cette condition équivaut a dire que 'automorphisme induit sur (ZX)*)1.X
préserve le sous-groupe L/ZX.
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On va voir que pour certains systémes de racines R, le réseau ZR
possede une isométrie parfaite telle que 'automorphisme induit sur (ZR)*/ZR
est la multiplication par —1 qui évidemment préserve tout sous-groupe.

PROPOSITION 4. Si L est un réseau entier de R"
de vecteurs de carré scalaire 2 du type

avec un systeme R

R =©®!-, Ay, ® qEs @ rEg,

et si rang(ZR) = rang (L), Clest-d-dire n = ) 2k; + 6q + 8r, alors L
posséde une isométrie parfaite qui induit sur ZR*/ZR
—1.

Preuve.

p,qg.r =0,

la multiplication par

Il suffit de constater ce fait individuellement pour
AZk = {el - €j€R2k+1,i #j},

et pour E¢. Pour Eg il n’y a rien a démontrer puisque (ZEg)* = ZE;,.

Pour A,,, soit t: R**1 - R2**1 Pisométrie définie par t(e) = —e; .,
les indices étant lus mod 2k + 1. Cette isométrie préserve A4,,, donc ZA4,,
et on constate que t | ZA4,, satisfait a 'équation

1 —A-t)(+2+..+2*"1H=0.

Donc 1—t: ZA,, - ZA,, est un isomorphisme.
Les classes de (ZA,,)* mod ZA,, sont représentées par

2k—r+1 2k

r
2%k + 1 Zi=2k—r+lei

2k—r
e DI

pour r = 0, 1, ..., 2k. (Voir [N], L4, p. 148))
On voit que

ty,) + ¥ = €0 — €—r+1 € LAy
et par conséquent, sur (ZA,,)*/ZA,,, lisométrie t se réduit a la multi-
plication par — 1.
Il en va de méme pour le systeme de racines E¢ qui est engendré par
6 racines simples o,,d,, .., o dont la matrice de produits scalaires est

2 0—-1 0 0 O]
0 2 0-1 0 0
1 0 2-1 0 0
0—1—-1 2 -1 0
0 0 0—1 2 —1
0 0 0 0-1 2
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correspondant au diagramme de Dynkin

0(1 OL3 4 O(5 Ae

O

o

Si s; désigne la réflexion définie par le vecteur a;, €t

w = 515253545586 5

on a
w(o,) = —(ot; + 03+ 0oy +0ts+0l)
w(ot,) = —(0ty+ 0ty +0ls + )
w(alz) = oy

w(o,) = o, + 03 + 0y + s + g
w(ds) = 0y

w(otg) = s

[ = —w,

onal —t + t> = 0ettest une isométrie parfaite de ZEg.
Comme (ZE¢)* /ZE¢ qui est cyclique d’ordre 3 est engendre par

(—oy +0y—0s+ ),

W =

| Yy =

on voit que wy, = y; mod ZE¢, et ty; = —y, mod ZE4. Ainsi ¢t induit la
multiplication par —1 dans le groupe quotient (ZE¢)*/ZEg.

(Voir les rubriques marquées (XII) dans [B], Chap. VI, § 4. Classification
des systémes de racines, p. 208 pour A, et p. 220 pour E;.)

La Proposition 4 ci-dessus démontre en dimension 24 que les réseaux
unimodulaires correspondant a

Ayy,2A4,,,3A45, 445, 64,,124,,4E, et 3E,,

dans la classification de Niemeier possédent tous une isométrie parfaite.
Pour le réseau unimodulaire dont le systeme de racines est 6D, la
situation est plus compliquée.
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Une base de ZD, est donnée par les racines simples o, o,, O3, 0,
formant le diagramme

A3

Oy

ce qui veut dire que la matrice des produits scalaires (a; . o; ) est

2 -1 0 O
-1 2 -1 -1
0 -1 2 0
| 0—-1 0 2]

Il existe une isométrie parfaite de ZD, donnée par les formules

tlog) = — (ot +03)

toy) = — oy

fos) = oy + 0y + o3 + 0y
totg) = 0y + 04

Elle a pour polyndme minimal 1 — X + X? et opére sur (ZD,)*/ZD,
= Z/2Z & Z/2Z par permutation circulaire des 3 classes non nulles repré-
sentées par 3 (o +0y), 3 (o, +o5) et 3 (a3 + o).

En utilisant les calculs de H. V. Niemeier, on peut alors vérifier que ¢
préserve 'unique réseau pair unimodulaire L en sandwich entre

ZD,® 1D, ®» 2D, H ZD, ® 2D, ® ZD, — R*

et son dual et pour lequel 6D, est le systtme de vecteurs minimaux (de
carré scalaire 2).

On trouvera la description de L dans [N], p. 173. Le réseau L est
engendré par Z(6D,) et 6 vecteurs x,, .., x¢ dont les classes mod Z(6D,)
sont données explicitement par H. V. Niemeier et sur lesquels 1'isométrie ¢
ci-dessus opere par

H(X2i-1) = X2i»

t(xy) = X4 + X pour i=1,23.
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Le réseau L est donc préservé par t et possede donc une isométrie

parfaite.
Enfin, pour le réseau de Leech A sans vecteurs de carré scalaire 2,

on peut €crire une isométrie parfaite en faisant appel a la belle description

de A donnée par J. Tits [T].
A est un module sur un ordre maximal A de l'algébre de quaternions

«ordinaires » H = Q(\/g ) (i, j, k) contenant
(= —3(14+i+j+k)

et e=14+C, ou 1= %(1+\/§) et ou x> x' designe la conjugaison
standard dans H.

On observe que 1 + { + (% = 0.

Le réseau A est défini comme sous-module de 43 par

A= {(x;,%,,x3)e A% |ex, = ex, = ex; = ijl x, mod 24} .
J. Tits munit A d’une forme hermitienne h donnée par
h(x, y) = ijlx’v.yveA
et la forme S: A x A — Z 4 valeurs entiéres est donnée par
S(x, y) = 3. Mh(x, y) + H(x, y))

ou Ma+bt) = a. (a, beZ)
On peut donc définir une isométrie t: A — A par

t(xl’x2>x3) = (-C_sxla —-sz, —CX3).

Cest déja une isométrie pour la forme hermitienne h et son polynéme
minimal est 1 — X + X2 Elle est donc parfaite.
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