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L'Enseignement Mathématique, t. 31 (1985), p. 173-186

FORMES DE SEIFERT ET FORMES QUADRATIQUES ENTIÈRES

par Michel Kervaire

Une s-forme de Seifert, où s + 1 est une forme bilinéaire (en général

non symétrique) sur un Z-module libre L de génération finie

A : L x L - Z

et telle que A + sA' soit unimodulaire, c'est-à-dire dét(A + sA') ± 1. Ici,

T(x, y) A(y, x) est la transposée de A.

Ces formes, considérées par H. Seifert [S], trouvent leur origine en

théorie des nœuds: Si œ Sn +2 est un «-nœud, c'est-à-dire une sous-
variété lisse de Sn + 2 homéomorphe (ou difféomorphe) à Sn, il existe une
sous-variété orientable lisse, à bord, Vn + 1 plongée dans Sn + 2 dont le bord
coïncide avec Z". Une telle variété est appelée une surface de Seifert du
nœud. Si n 2m — 1 est impair, V est de dimension paire 2m, plongée
dans S2m + 1 et après choix d'un champ v de vecteurs (non nuls) normaux
à V dans S2m+1 on peut définir des applications z± : V S2m + 1

— y par
ù(R) P ± olv{P) avec a > 0, petit et on obtient une forme bilinéaire

A-.HJY) x Hm(V)^Z
donnée par A(x, y) l(x, i + (y)) Z, où /(x, i + (y)) désigne le coefficient d'enlacement

des m-cycles disjoints x et i + (y) dans S2m + 1.

Un calcul facile montre que

A(x, y) + (- l)mA(y, x) S(x, y),

où S est la forme d'intersection de la variété V. (Voir [K].)
En posant L Hm(V)/(torsion) on voit donc, par le théorème de dualité

de Poincaré, que A est une (-l)m-forrne de Seifert sur L. Il suffit même
pour cela que I b(V) soit une sphère d'homologie.

Si maintenant on suppose que le nœud Z2m_1 c= s2m+1 est fibré,
cest-à-dire que le complémentaire S2m+1 - Z2m~1 fibre sur le cercle S1,
on peut prendre pour V l'adhérence d'une fibre. Le complémentaire du nœud

" + 1 - Z s'obtient en recollant F x {1} cz V x I avec V x {0} par la
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monodromie t: V -> V de la fibration et i+ et i_ ° t : V S2m + 1
— V sont

homotopes dans le complémentaire de V. On a donc

A(x,y) l(xj+(yj) l(x,i_ty)
l{i+x, ty) (-l)m+1 Z(ryf i + x)

(-1 )m+1A{ty,x).

Ainsi, S(x, y) A(x, y) + —1 )mA(y, x) A((l — t)x, y), et

dét S dét(A). dét(l — t).

La forme de Seifert associée à la fibre d'un nœud fibré de dimension

impaire est donc unimodulaire.

Remarque. La formule ci-dessus montre aussi en passant que la
monodromie t: L - L (L //m(F)/(torsion)) satisfait à la condition dét (1 — t) ± 1.

Nous retrouverons cette condition dans le contexte algébrique qui va suivre.

Il est donc assez naturel de se poser le problème suivant sur lequel

Claude Weber a attiré mon attention :

Problème. Soit S une forme bilinéaire, unimodulaire, s-symétrique sur un

Z-module libre de génération finie L. Existe-t-il une forme A : L x L Z,

unimodulaire sans propriété de symétrie telle que S A + sA'

On supposera évidemment S paire, c'est-à-dire S(x, x) 0 mod 2 pour
tout x e L.

En considérant la forme de rang 2 donnée par la matrice

(et s= +1), on observe immédiatement que la réponse au problème ci-dessus

peut être négative.
Pour 8 — 1, ou pour 8 +1 avec S indéfinie, on peut résoudre

complètement le problème posé en utilisant la classification des formes bili-

néaires, unimodulaires et e-symétriques.

1. LE cas 8 — 1

Dans ce cas, S antisymétrique est une somme orthogonale de plans

hyperboliques
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L'identité

0 r i r 1 0"

1 1 o_ _° _i i_

montre que toute forme antisymétrique, unimodulaire provient d'une forme

de Seifert unimodulaire.
Pour toute la suite nous nous plaçons donc dans le cas où s +1.

2. Le cas indéfini

Si S est symétrique, indéfinie, c'est-à-dire s'il existe un vecteur x e R ® L,
non nul, tel que SR(x, x) 0, on dispose encore d'une classification.

(Voir [H.-M.], ou [Se], Théorème 5, p. 93.) Dans ce cas, S représente en
fait 0 sur Z, c'est-à-dire il existe x e L non nul tel que S(x, x) 0, et

(après changement de signe éventuel) S est isomorphe à une somme orthogonale

S mH © n r8 m ^ 1

où H est le plan hyperbolique (symétrique cette fois) donné par la matrice

et où r8 est la forme unimodulaire entière de rang 8 définie comme suit :

Soit Z8 le Z-module des points de coordonnées entières dans R8

Zi 1
Ré>; muni du produit scalaire euclidien x y xt. yt. On pose

a ei + e2 + - + et b \a. Soit V0 le sous-module de V Z8
formé des points dont le produit scalaire avec b est entier :

V0 {x g Z8 | x b e Z}

On définit alors T8 V0 + Zb. C'est un réseau entier, pair et unimodulaire.
(Voir [H.-M.] ou [Se] pour les détails.)

On a déjà vu que la forme hyperbolique
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H
"0 1"

1 0

ne provient pas d'une forme de Seifert unimodulaire. On va voir que pour
les formes indéfinies c'est la seule exception.

Proposition 1. Toute forme S symétrique entière paire, unimodulaire,

indéfinie et de rang > 2 provient d'une forme de Seifert unimodulaire,
c'est-à-dire peut s'écrire S A + A' avec A entière et dét (^4) ± 1.

Preuve. Comme S, après changement de signe éventuel, s'écrit S mH

+ n r8 par le théorème de classification, il suffit de vérifier l'assertion pour
mH, m 2, 3, T8 et H -f T8.

En notant / la matrice unité de rang m, on a

0 / 11o r~0
1

io
1

+
i 1 0

1J °_

et on voit qu'il suffit de trouver X e GLm(Z) tel que I — X soit également
inversible sur Z. Il existe des matrices de ce type pour tout m ^ 2. En

particulier pour m 2, 3 on peut prendre par exemple

0 -1 "011
X 1oo

1 1 -1 1 1

La matrice de T8, pour une base convenable, est

2 -1 0 0 0 0 0 0

-1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 0

0 0 -1 2 -1 0 0 0

0 0 0 -1 2 -1 0 -1
0 0 0 0 -1 2 -1 0

0 0 0 0 0 -1 2 0

0 0 0 0 -1 0 0 2

Cette forme provient donc trivialement d'une forme de Seifert

unimodulaire A. Il suffit de prendre A trigonal supérieur avec 1 sur la

diagonale et les coefficients de T8 dans le triangle supérieur.

Pour H + r8, on peut prendre
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0 1 1 0 0 0 0 0 0 o"

0 0 -1 0 0 0 0 0 0 0

-1 1 1 -1 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 0 0 1 -1 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 0 0 1 -1 0 -1
0 0 0 0 0 0 0 1 -1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

On va voir que le cas des formes définies est beaucoup moins trivial.

3. Le cas défini

Nous considérons maintenant les formes symétriques entières unimo-
dulaires, paires, définies positives.

Comme on sait, le rang de la forme est alors un multiple de 8, et

on ne dispose plus de classification complète que pour les rangs 8, 16 et 24.

Je n'ai dans ce cas que des résultats expérimentaux fragmentaires.
On va d'abord reformuler le problème original à l'aide du lemme bien

connu suivant :

Lemme. Soit S une forme bilinéaire symétrique unimodulaire et paire
sur le Z-module libre de rang fini L. Alors, il existe une forme bilinéaire
unimodulaire A : L x L -+ Z telle que S A + Ä si et seulement si S

possède une isométrie t: L — L telle que 1 — t : L — L est un isomorphisme.

Preuve. Si S A 4- A' avec dét A ± 1, alors on peut définir t\ L L
par

A(tx, y)- A(y, x).

On a A(tx, ty) — A(ty, x) A(x, y). Ainsi est une isométrie pour A
et donc aussi pour S. On a en outre

S{x, y) A(x, y)+ A(y,y),
ce qui montre que 1 — t est inversible sur Z.
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Réciproquement, s'il existe une isométrie t: L -+ L pour S avec 1 — t

inversible, on peut définir A unimodulaire par A(x, y) — Lx, y). En

posant s-1 1 —t, on a alors

S(s-1x, s~ ly) 2S(x, y) — S(x, ty) — S(tx, y)

S(x,s~1y) + S(s_1x, y).

En substituant x et y pour s_1x et il vient

S(x, y) S{sx, y) + S(x, sy) S{sx, y) + S{sy, x)

A(x, y) + A(y, x),

et S provient donc d'une forme de Seifert unimodulaire.
Une isométrie t : L -» L telle que 1 — t soit un isomorphisme sera appelée

une isométrie parfaite.
La question est donc: Quelles sont les formes symétriques paires, uni-

modulaires, définies positives qui admettent une isométrie parfaite
Comme toute forme symétrique, définie positive est isomorphe à un réseau

de Rn muni du produit scalaire euclidien canonique, nous écrirons x. y

au lieu de S(x, y) et x2 au lieu de S(x, x) et nous supprimons S des

notations.
Soit donc L un réseau entier de Rn. Pour un entier donné e, on va

considérer l'ensemble fini X X(c) de tous les vecteurs x g L tels que
x2 c. On notera ZX le sous-module de L engendré par X. Toute
isométrie de L conserve X et donc aussi ZX.

On dira que X est décomposable siX X1vX2 avec X1 n X2 0,
les vecteurs de X1 étant orthogonaux à tous les vecteurs de X2. On écrira

X Xx © X2. La somme ZX ZXt © ZX2 est alors une somme directe

orthogonale. Il est clair que X s'écrit de manière unique sous la forme

X Xt © © Xr avec les Xt, i 1,..., r indécomposables.
Bien entendu, X peut être décomposable, même si le réseau L est

indécomposable.

Proposition 2. Soit L un réseau entier de Rn. Soit X Tensemble

des vecteurs de L de carré scalaire fixe donné et soit X Xx © © Xr
sa décomposition avec Xt indécomposable. Si L possède une isométrie

parfaite, il en est de même pour chaque sous-réseau ZXi9 i 1,..., r.

Preuve. Il est évident qu'une isométrie t de L doit permuter entre eux

les facteurs Xt (indécomposables) de la décomposition de X. Soit Y l'un
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quelconque de ces facteurs et soit e la plus petite puissance positive de t telle

que teY Y. Je dis que te\ZY est parfaite.
On considère le « carrousel » M £ e.=^ Ztl Y. C'est un sous-module de L

conservé par t et t \ M : M - M est donc parfaite. Soit xeZY. Il existe un

élément

y OWi.-J'e-JeZiZfiy M

avec yt e ZfY et tel que (1 — t)y (x, 0,..., 0).

On a en développant

yo - tye-i x> et yt - tyi-1 0 Pour 1 •••'e - 1
•

Par suite,

tyc_2 tc_2yi £e_1y0> et * (l-O^os

ce qui montre que 1 — te: ZY -> Z7 est surjective et te\ZY est donc une
isométrie parfaite.

On peut appliquer la Proposition 2 dans le cas où X est formé des

vecteurs de L de carré scalaire 2. Le système X est dans ce cas un
système de racines au sens de la théorie des groupes de Lie. Un tel système
est somme orthogonale de systèmes indécomposables de l'un des types

An,Dn,E6,E7 ou E8.

Ces systèmes sont décrits (entre autres) dans [N], 1.3, p. 145-146. Par
exemple, ZAn {xeZ"+1 lX"=1 xt 0}, engendré par le système
indécomposable An {et — ej, i ^ j }.

Proposition 3. Les réseaux ZA2k-x et ZDk+4 pour k ^ 1, ainsi
que le réseau ZEn ne possèdent pas dé isométrie parfaite.

Preuve. Soit L cz Rn un réseau entier. On note

L# {x e RL | x y e Z pour tout y e L}
le réseau dual. (On suppose RL R".)

Toute isométrie t de L se prolonge en une isométrie unique de L#
et induit un automorphisme de L*/L. Si f.L^L est parfaite, il en est
de même de l'extension t* : L# - L*, car

((l-t)"1*, y)(x, y) - (x, (l-t)_1y)
J et l'automorphisme induit sur le quotient L*/L est donc aussi parfait.

Htak.
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Pour A„, on a (ZAn)#/ZAn Z/(n+l)Z. Si n 2k — 1 est impair,

ZjlkZ possède un unique sous-groupe d'ordre 2 qui est donc laissé fixe

par tout automorphisme. Donc, le réseau ZAlk_x, k ^ 1, ne possède pas

d'isométrie parfaite.
Le même raisonnement s'applique également au système E7: On a

(Z£7)#/Z£7 Z/2Z.
Pour Dn, n ^ 5, on a

(ZDn)#/ZDn
Z/4Z pour n impair,

Z/2Z © Z/2Z pour n pair.

Le raisonnement ci-dessus suffirait donc encore pour n impair, mais pas

pour n pair. (En fait, on verra ci-dessous que D4 possède une isométrie

parfaite.)
Par définition, ZDn {^eZn|^"=lxi 0 mod 2}, engendré par

Dn {± et + ej9 i ^ j}. On vérifie (Voir [N], p. 149.) que (ZD„)#/ZD„ est

engendré par les classes mod ZDn de y0 0 et

yiiZ"=1 ei'yi e» et 3 HUZl e<~e»)

Comme pour tout x e ZDn, on a

(yi + x)2 yj + X"=1 n/4,

et

(yi + x)2 yl + Z"=1Xi(Xi + l) + 1) ^ y\ n/4,

il s'ensuit que pour n > 4, la classe de y2 m°d ZDn est la seule classe de

(ZD„)# qui contient un vecteur de carré scalaire égal à 1. Cette classe doit

donc être laissée fixe par toute isométrie de (ZD„)#, et il en résulte que

ZDn ne possède pas d'isométrie parfaite pour n > 4.

Nous obtenons donc le

Corollaire. Un réseau unimodulaire pair L a Rn dont le système R

des vecteurs de carré 2 se décompose en

R 42j^_^ © R ou R Dfc+4 © R

avec k ^ 1, ou R En © R' ne possède pas d'isométrie parfaite. La

forme définie positive qu'un tel réseau définit ne provient donc pas d'une forme
de Seifert unimodulaire.
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La première partie de l'énoncé vaut d'ailleurs pour les réseaux avec

dét(L) ^ 1.

On peut appliquer ce corollaire aux formes de basses dimensions.

En dimension 8, on a une seule classe d'isomorphie de réseaux pairs

unimodulaires, représentée par r8 ZE8 qui possède une isométrie parfaite

comme on l'a déjà vu.

En dimension 16, on a 2 classes F8®r8 et T16 qui correspond au

système de racines D16. (L'ensemble des vecteurs de carré scalaire 2 dans

r8„ forme le système de racines E8 pour n 1 et D8n pour n > 1.)

Donc, d'après le corollaire, r16 n'admet pas d'isométrie parfaite.
Dans [N], H. V. Niemeier classe les réseaux unimodulaires pairs en

dimension 24. Il existe un réseau (et un seul à isomorphisme près) dont
tous les vecteurs non-nuls ont un carré scalaire ^ 4. On verra ci-dessous qu'il
possède une isométrie parfaite. Il existe en outre 23 réseaux dont l'ensemble
des vecteurs de carré scalaire 2 forme un système de racines non-vide.
Ces réseaux sont chacun caractérisé par leur système de racines qui sont les

suivants :

^24 2^-12, 3A8 6^4, 12A2 5 6D4, 4E6 3E8

pour lesquels on va voir que le réseau correspondant possède une isométrie
parfaite ;

8A3, 24A,, D4 © 4^5, 2D5 © 2A,, D6 © 2Â9 D9 © Â15,

4D6, 3D8, 2D12, D24

Eç © D7 © An, E2 © Ai7, 2Ej © DiQ, E8 © D16

qui sont les systèmes de racines de réseaux sans isométrie parfaite. (On a
noté nR - R © R © © R, n fois.)

La dernière assertion résulte du corollaire, puisque ces systèmes contiennent
tous un facteur A2k_1 ou Dfe + 4 avec k ^ 1.

Considérons le cas où le réseau entier L a Rn est de même rang que
le réseau engendré par son système X de vecteurs d'une longueur fixée.
On a donc ZjX a L a (Z2Q# et L est unimodulaire si et seulement si
L* L.

Pour qu'il existe une isométrie parfaite de L, il faut et il suffit qu'au
moins une isométrie parfaite de ZX qui, comme on l'a vu, se prolonge
de manière unique à (Z2f)#, préserve L.

L Cette condition équivaut à dire que l'automorphisme induit sur (ZX)*/ZX
préserve le sous-groupe L/ZX.
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On va voir que pour certains systèmes de racines R, le réseau ZR
possède une isométrie parfaite telle que l'automorphisme induit sur (ZR)#/ZR
est la multiplication par —1 qui évidemment préserve tout sous-groupe.

Proposition 4. Si L est un réseau entier de Rn avec un système R

de vecteurs de carré scalaire 2 du type

R ®ï= i Â2ki © qE6 © rE8, p, q, r ^ 0

et si rang (ZR) rang (L), c'est-à-dire n =» 2kt + 6q -h 8r, alors L
possède une isométrie parfaite qui induit sur ZR*jZR la multiplication par
-1.

Preuve. Il suffit de constater ce fait individuellement pour

A2k {*i - ej E R2k+1, i ïj},
et pour E6. Pour E8 il n'y a rien à démontrer puisque (ZE8)# ZE8.

Pour A2k, soit t:R2k + 1 - R2k + 1 l'isométrie définie par t(et) — —ei + 1,
les indices étant lus mod 2k + 1. Cette isométrie préserve A2k, donc ZAlk
et on constate que 11 ZA2k satisfait à l'équation

i - (1 — 0(t+t3+... + t2k~1) o.

Donc 1 — t: ZA2k ZA2k est un isomorphisme.
Les classes de (ZA2k)# mod ZA2k sont représentées par

r y2k-r 2k - r + 1 2k
Vr ~ 2k +1 ^i=0 6i

2k 1

pour r 0, 1,2k.(Voir[N], 1.4, p. 148.)

On voit que

djv) + ^0 — ^2fc-r+l e

et par conséquent, sur (ZA2k)#/ZA2k, l'isométrie t se réduit à la

multiplication par — 1.

Il en va de même pour le système de racines E6 qui est engendré par
6 racines simples ql1 a2,oc6 dont la matrice de produits scalaires est

2 0 -1 0 0 0

0 2 0 -1 0 0

-1 0 2 -1 0 0

0 -1 -1 2 -1 0

0 0 0 -1 2 -1
0 0 0 0 -1 2
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correspondant au diagramme de Dynkin

at oc3 oc4 oc5 a6

183

4 oc2

Si Si désigne la réflexion définie par le vecteur af, et

W S1S2S3S4S5S6

on a

W(ai) ~~ (0e! +a3 + 0C4 + 0C5 + a6)

w(a2) — (oc 2 + 0C4 + + aô)

w(a3) ax

w(a4) a2 -f oc3 + a4 + a5 + a6

w(oc5) a4

w(a6) a5

et w satisfait à l'équation 1 + w4 + w8 0. Donc en posant

on a 1 — t + t2 0 et t est une isométrie parfaite de ZE6.
Comme (ZE6)*/ZE6 qui est cyclique d'ordre 3 est engendré par

3>i ^(-ai + a3-a5 + a6),

on voit que wyt yt modZE6, et tyx —yx modZ£6. Ainsi t induit la

multiplication par —1 dans le groupe quotient (ZE6)*/ZE6.
(Voir les rubriques marquées (XII) dans [B], Chap. VI, § 4. Classification

des systèmes de racines, p. 208 pour Alk et p. 220 pour E6.)
La Proposition 4 ci-dessus démontre en dimension 24 que les réseaux

unimodulaires correspondant à

^24 ' 2/412 5 3A8, 4v46 6A4, 12A2, 4£6 et 3,
dans la classification de Niemeier possèdent tous une isométrie parfaite.

Pour le réseau unimodulaire dont le système de racines est 6D4 la
situation est plus compliquée.
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Une base de ZD4 est donnée par les racines simples oq, a2, a3, a4

formant le diagramme

ce qui veut dire que la matrice des produits scalaires (oq. oq est

2 -1 0 0

1 2 -1 -1
0 -1 2 0

0 -1 0 2

Il existe une isométrie parfaite de ZD4 donnée par les formules

t(ai) - (a2 + a3)

t(a2) - a4

t(a3) oq + a2 + a3 + a4

t{a4) a2 + a4

Elle a pour polynôme minimal 1 — X + X2 et opère sur (ZZ)4)#/ZZ)4

Z/2Z © Z/2Z par permutation circulaire des 3 classes non nulles
représentées par j (oq + a4), j (ax + a3) et \ (a3 -h a4).

En utilisant les calculs de H. V. Niemeier, on peut alors vérifier que t

préserve l'unique réseau pair unimodulaire L en sandwich entre

zD4 © ZD4 © ZD4 © zD4 © ZD4 © ZD4 Œ R24

et son dual et pour lequel 6D4 est le système de vecteurs minimaux (de

carré scalaire 2).

On trouvera la description de L dans [N], p. 173. Le réseau L est

engendré par Z(6D4) et 6 vecteurs x1,x6 dont les classes mod Z(6D4)

sont données explicitement par H. V. Niemeier et sur lesquels l'isométrie t

ci-dessus opère par
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Le réseau L est donc préservé par t et possède donc une isométrie

parfaite.

Enfin, pour le réseau de Leech A sans vecteurs de carré scalaire 2,

on peut écrire une isométrie parfaite en faisant appel à la belle description
de A donnée par J. Tits [T].

A est un module sur un ordre maximal A de l'algèbre de quaternions

« ordinaires » H Q(y/5) (i, j, k) contenant

Ç — -i(l + i +j+k)

et e i + Ç', où i i(l+a/5) et où xhx' désigne la conjugaison
standard dans H.

On observe que 1 + Ç + Ç2 0.

Le réseau A est défini comme sous-module de A3 par

A {(*!, X2> x3) g A3 I ex1 ex2 ex3 £*=i xv mod 2^1}

J. Tits munit A d'une forme hermitienne h donnée par

h(x,y)XLi
et la forme S : A x A Z à valeurs entières est donnée par

y) i • k(h(x, y) + h'(x, y))

où X(a + bx) a. (a, beZ.)
On peut donc définir une isométrie t : A -> A par

t(Xi x2, x3) (^x^, C-^3) •

C'est déjà une isométrie pour la forme hermitienne h et son polynôme
minimal est 1 — AT H- X2. Elle est donc parfaite.

BIBLIOGRAPHIE

[B] Bourbaki, N. Groupes et algèbres de Lie. Hermann, 1968.
LH.-M.] Husemoller, D. and J. Milnor. Symmetric Bilinear Forms. Ergebnisse der

Mathematik, Bd 73. Springer, 1973.
[K] Kervaire, M. Les nœuds de dimensions supérieures. Bull. Soc Math de

France 93 (1965), 225-271.
[N] Niemeier, H. V. Definite quadratische Formen der Dimension 24 und Diskri-minante 1. Journal of Number Theory 5 (1973), 142-178.



186 M. KERVAIRE

[S] Seifert, H. Über das Geschlecht von Knoten. Math. Annalen 110 (1934),
571-592.

[Se] Serre, J.-P. Cours d'arithmétique. P.U.F., 1970.

[T] Tits, J. Quaternions over Q(yJ5), Leech's lattice and the sporadic group of
Hall-Janko. Journal of Algebra 63 (1980), 56-75.

Reçu le 12 mars 1984)

Michel Kervaire

Section de Mathématiques
Case postale 240
CH — 1211 Genève 24


	FORMES DE SEIFERT ET FORMES QUADRATIQUES ENTIÈRES
	1. Le cas ε = —1
	2. Le cas indéfini
	3. Le cas défini
	...


