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A HOLOMORPHICALLY SEPARABLE COMPLEX SPACE

WITHOUT THE GELFAND TOPOLOGY

by Sandra Hayes-Widmann

Abstract

An example of a holomorphically separable complex space with a Stein

envelope of holomorphy which does not carry the Gelfand topology is given.

This example also shows that an injective holomorphic map cp: X -+ Y

between complex spaces with dim^Y dim^Y, x e Y, is not always open,

even when cp is the canonical map of a pre-Stein space Y into its envelope

of holomorphy.

Introduction

The Gelfand topology for a reduced complex space (X, Cr) is the weak

topology on X determined by the global function algebra (9(X). Since only
holomorphically separable complex spaces can carry this topology, it is

natural to ask whether holomorphic separability characterizes those complex

spaces with the Gelfand topology. A remark in [4, Bemerkung 3] implies
that this is the case, at least for pre-Stein spaces. However, a counterexample

given here shows that holomorphically separable spaces need not

I
have the Gelfand topology, even when they are pre-Stein.

it r

cat

Example

If a complex space (X, 0) is furnished with the Gelfand topology, then
it must be holomorphically separable in a strong sense—every interior point
can be separated not only from every other interior point but also from
every "boundary" point by a global holomorphic function. More precisely,
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the latter separation property means that for every point x e X and for i

every sequence (x„)neN in X \ {x} with no cluster point in X, there exists :

a global holomorphic function fe (9(X) such that

fix) i { /(*„) I n g N }

The following example shows that holomorphically separable complex

spaces having interior points which cannot be separated from boundary
points actually exist. I am indebted to J. P. Vigué for the construction
involved in this example.

In C3 with the coordinates x, y, z denote by

1

C: - <(0, y, 0) g C \y ^ -

the circle with radius 1/2 around the origin in the y-plane. In {0} x C2

let

Y: <(0, y, z) e C y\ < l,|z| < 1 \C

be the unit bidisc with C omitted. Let Z be the unit bidisc in C2 x {0}
with the circumference of C elected, i.e.

Z : < (x, y, 0) 6 C3 I x I < 1,1 y I < 1 \ (0,y,0)eC I y I

2

The ring

R : < (0, y, 0) e C
1

2
< \y\< i

is an analytic subset of X as well as of Y. Attach Y to Z along R and

call the resulting space X. This space, which is the fiber sum (pushout)
Y H- R Z of Y and Z under the inclusions R -> Y and R - Z, is a

holomorphically separable complex space [2].

X cannot have the Gelfand topology. To see this, observe that X is the

disjoint union of Y and Z with points of R identified. Consequently, the

origin in C3 can be considered as an interior point in X, since it is a

point in Z, as well as a point not belonging to X, since it isn't in Y.

These two points can't be separated by any global holomorphic function.
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X is a pre-Stein space, i.e. X has a Stein envelope of holomorphy as

defined in [1]. This follows from the fact that (9 (X) is the algebra (9 (D) of

global holomorphic functions on the Stein space D : D1 + ED2 obtained

by attaching the unit bidisc Dx in {0} x C2 to the unit bidisc D2 in

C2 x {0} along

It is well known that every Stein space is equipped with the Gelfand

topology (see [1]).
There is a classical dimension formula [3, Sätze 28, 29] for an injective

holomorphic map cp : X - Y between complex spaces where Y is locally
irreducible which states that cp is open, if dimx X dim9(x) Y for x g X.
According to the above example, this formula cannot be generalized to maps
cp : X ->• Y if Y is not locally irreducible, not even when Y is the Stein

envelope of holomorphy of X and cp is the canonical map which takes

points x of X to the corresponding point evaluations (9 (X) i— C, / ->/(x),
in the continuous spectrum Sc ((9 (X)
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