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A HOLOMORPHICALLY SEPARABLE COMPLEX SPACE
WITHOUT THE GELFAND TOPOLOGY

by Sandra HAYES-WIDMANN

ABSTRACT

An example of a holomorphically separable complex space with a Stein
envelope of holomorphy which does not carry the Gelfand topology 1s given.
This example also shows that an injective holomorphic map ¢: X — Y
between complex spaces with dim, X = dim, Y, x € X, is not always open,
even when ¢ is the canonical map of a pre-Stein space X into its envelope
of holomorphy.

INTRODUCTION

The Gelfand topology for a reduced complex space (X, (") is the weak
topology on X determined by the global function algebra ((X). Since only
holomorphically separable complex spaces can carry this topology, it is
natural to ask whether holomorphic separability characterizes those complex
spaces with the Gelfand topology. A remark in [4, Bemerkung 3] implies
that this is the case, at least for pre-Stein spaces. However, a counter-
example given here shows that holomorphically separable spaces need not
have the Gelfand topology, even when they are pre-Stein.

EXAMPLE

| If a complex space (X, 0) is furnished with the Gelfand topology, then
it must be holomorphically separable in a strong sense—every interior point
can be separated not only from every other interior point but also from
¢very “boundary” point by a global holomorphic function. More precisely,
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the latter separation property means that for every point x € X and for
every sequence (x,), in X \ {x} with no cluster point in X, there exists |
a global holomorphic function fe @(X) such that

fx)¢{fx)IneN}.

The following example shows that holomorphically separable complex
spaces having interior points which cannot be separated from boundary
points actually exist. I am indebted to J. P. Vigué for the construction
involved in this example.

In C? with the coordinates x, y, z denote by

1
g_
| v 2}

the circle with radius 1/2 around the origin in the y-plane. In {0} x C?
let

C: = {(0, y, 0) e C?

Y: = {(O,y,Z)GC3 lyl<Llzl< 1}\(3

be the unit bidisc with C omitted. Let Z be the unit bidisc in C* x {0}
with the circumference of C elected, 1.e.
vl ==
yi= 5 (-

Z: = {(x,y,0)€C3 x| <1lyl< 1}\{(0,%0)6(33

The ring

1
R: = {(O,y,O)eC3 5<lyl< 1}

is an analytic subset of X as well as of Y. Attach Y to Z along R and
call the resulting space X. This space, which is the fiber sum (pushout) |
Y + x Z of Y and Z under the inclusions R > Y and R — Z, is a holo- |
morphically separable complex space [2]. ' 5

X cannot have the Gelfand topology. To see this, observe that X is the
disjoint union of Y and Z with points of R identified. Consequently, the§
origin in C? can be considered as an interior point in X, since it is a |
point in Z, as well as a point not belonging to X, since it isn’t in Y. }
These two points can’t be separated by any global holomorphic function. '
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X is a pre-Stein space, ie. X has a Stein envelope of holomorphy as
defined in [1]. This follows from the fact that @ (X) is the algebra ¢ (D) of
global holomorphic functions on the Stein space D: = D; + g D, obtained
by attaching the unit bidisc D; in {0} x C* to the unit bidisc D, in
C, x {0} along

[yl < 1}-

It is well known that every Stein space is equipped with the Gelfand
topology (see [1]).

There is a classical dimension formula [3, Sdtze 28, 29] for an injective
holomorphic map ¢: X — Y between complex spaces where Y is locally
irreducible which states that ¢ is open, if dim, X = dimg, Y for xe X.
According to the above example, this formula cannot be generalized to maps
¢:X - Y if Y is not locally irreducible, not even when Y is the Stein
envelope of holomorphy of X and ¢ is the canonical map which takes
points x of X to the corresponding point evaluations @ (X)+— C, f — f(x),
in the continuous spectrum S, (¢ (X) ).

E: = {(0, y,0)e C?
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