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4.2. Lemma. Let L be a lattice in R" whose elements have pairwise
distances ^ 1 and consider a linear subspace E of R" which is spanned

by k vectors w1,..., wk g L. If a lattice point weL is not contained
in E, then its E1-component w1 has length

I w1 I ^ (3 + |wj +... + |wk|) n.

Proof Let N be the integer part of(3 + |w1| + + |wfc|)'1. IfO < | w1| ^ 1JN,

then 0, w, 2w,..., Nw have distance ^ 1 from E. Adding suitable integer linear

combinations of w1,...,wk to each of these vectors we obtain N + 1 new

pairwise different lattice points whose E1 components have not changed but

whose E components are ^ (|w1| +... + |wÄ|). These N + 1 lattice points have

distance ^ 1 + i (JwilIT — + |wfc|) from the origin, a contradiction to

Lemma 4.1.

5. Proof of Theorem II

For an n-dimensional crystallographic group G we let L(G) be the

subgroup consisting of all pure translations in G. By Theorem I, L(G) is a

lattice in R". The standard observation which is "responsible" for Theorem IÎ
is

5.1. Lemma. If a g G and if w g L(G), then A(w)eL(G\(A rot ot I

Proof Recall that w trans co, co g L(G). Now acoa_1GG is a

translation with translation vector A(w). Hence A(w) g L(G).

5.2. Definition. A crystallographic group is called normal if

(i) the vectors in L(G) have pairwise distances ^ 1

(ii) L(G) contains n linearly independent unit vectors.

We do not ask that the vectors in (ii) generate the entire lattice L(G

Our idea is to count the normal groups. This will suffice due to th

following.

5.3. Proposition. Each crystallographic group G is isomorphic to a normt

crystallographic group.
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Proof. By scaling we may assume that the shortest non zero vector in

L(G) is a unit vector. Now assume by induction that L(G) satisfies 5.2 (i)

and contains k < n unit vectors wq,..., wk which span a /c-dimensional linear

subspace E of R". It remains to find a group G' isomorphic to G such that

1(G) contains k + 1 linearly independent unit vectors and also satisfies

5.2 (i).

If for some a g G and for some wf(i ^ k) the vector A(w,) is not contained

in E, then by Lemma 5.1 g L(G) is already the (/c + l)-st vector and we

are done.

If on the other hand all rotation parts of G leave E—and consequently E1—

invariant, then the affine transformations <I>M given by

O^+ x1) x£ + px1

(p > 0) commute with the rotation parts of G. Therefore, the affine conjugate
(and henceforth isomorphic) groups G^ also act by rigid motions.

Since L(G^) 0^(L(G)), Lemma 4.2 implies that GM violates 5.2 (i) if p > 0

is very small. Hence there exists a minimal p' > 0 such that G^ satisfies
5.2 (i). Since the affine transformations act trivially on E, the shortest

vector in L(G[l)\E must be a unit vector and wl,..., wk e L(G^). Now G^
has the required properties and Proposition 5.3 is proved.

5.4. The proof of Theorem II now proceeds in two steps.

Step 1. Each normal crystallographic group G is uniquely characterized by

a group table ((ii) below).

Proof. Fix n linearly independent unit vectors wx,... wn g L(G) and
consider the sublattice

L {m1w1 + + mnwn \ mY,..., mn e Z}

h is a subgroup of G. In each right coset modulo L of G we select a

representative co whose translation part w has length

(i) I w I ^ - (Inql +... +1wj) -
Since G is discrete (2.4. (i)), there are only finitely many such representatives,
saY ron+1,(oN. Every ocgG can now be expressed in a unique way in
the form

a (m1w1 + + mnwn)G>v
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where n + 1 ^ v < N. Since our L is isomorphic to Z", G is uniquely
determined (up to isomorphism) by the integers mijk, v(/, k) and N which occur

in the table

(ii) Wj(ùk(m1Jkw1+...+ mnJkwn) a>v(M), 1,N
(For i 1,..., n, cof is the translation by w{).

Clearly, the proof of Theorem II will be completed by

Step 2. The absolute values of mijk,v(j,k) and N in (ii) have an upper

bound which depends only on the dimension n (see (iii) and (iv)

below

Proof The euclidean motions cov(j>fc), co^ and cok in (ii) have translation

n
parts of length < - (c.f. (i)). Consequently the translation mljkw1 + + mnjkwn

3n
(D/DfcCD v(j* k) has length In particular,

3 n

\miJkwtl<y,i l,...,n

where wf- is the component of w, perpendicular to the hyperplane E spanned

by Wj,wf_ j, w; +1,w„. By Lemma 4.2 we have | > (n + 2)~". Hence

(iii) I mijkI< y (n + 2)".

Now let us estimate N. The linear transformation A rot a, a e G is

uniquely determined by its images A(wf i 1,..., n. By Lemma 5.1 each A

these images is a unit vector of L(G) and, by Lemma 4.1, one out of it

most 3" candidates. It follows that at most (3")" different rotation pans

occur in G.

If two elements cop and coCT among con+1,..., <% have the same rotation
n n

part, then (OpCO^1 is a vector of length < - + - (c.f. (i)) and, again I y

Lemma 4.1, one out of at most (2n+l)" candidates. Hence

(iv) N ^ n + (3")" • (2n+ l)n.

Since v(i, j) < N, this concludes the proof of Theorem II.
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5 5. Remark. From the preceding proof we can derive the upper bound

exp exp 4n2 for the number of isomorphism classes of n-dimensional crystallographic

groups. The correct numbers for n 1,2, 3,4 are respectively

2, 17, 219, 4783 [4].
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