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Since A is an orthogonal map, the orthogonal complement EA of EA

is also an T-invariant linear subspace of R". We define

(Ü) m^A) max { | Ax — x | / [ x | | xe EA\{0} }

if # {0} and set m1(A) 0 if EA {0}. It follows that

(iii) mL(A) < m(A) if A ^ id

We let x xE + x1, xeeEa, xeeE\ be the orthogonal decomposition

of a vector x with respect to EA and EA. The simple observation

(iv) I Axe - Xe I - m(A) \xE\, {Ax1 - x1 | < m\A) | x1 |

together with (iii), will play a crucial role in the proof of Theorem I.

2.3. Commutator estimate. For A, B e 0(n) we have

m([A, B]) ^ 2m(A) m(B).

Proof. Verify the identity

[A,ß] - id ((A-id)(B-id) - (B-id)(A-id))A-^B~l

From I A~1B~1x \ \ x | it then follows that

I [y4, B~\ x — x I ^ m(A) m(B) \ x | + m(B) m(A) \ x \

for all x e Rn.

2.4. Crystallographic groups. Discreteness and compactness of the
fundamental domain will be used as follows :

A group G of rigid motions in R" is called crystallographic if
(i) for all t > 0 only finitely many a g G have | a | ^ t,

(ii) there is some constant d such that for each xeR" there is an element

iE G satisfying \ a — x \ ^ d.

3. Proof of Theorem I

Now let G be an n-dimensional crystallographic group.

3.i. Lemma A ("Mini Bieberbach"). For each unit vector ue R" and for all
> 0 there exists ß G G satisfying
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fr 7^ 0 £ (m, fr) < Ö m(B) ^ s

Proof. By 2.4 (ii) there exists an element ßfc g G satisfying | bk — k u | ^ d,

for each k 1, 2... The sequence ßx, ß2,... satisfies

I bk I -> °o £ (w, frk) -> 0 (/c —* go)

Since O(n) is compact, we find a subsequence such that the rotation parts

Bk also converge. Consequently there exist i < j such that

HBjBf1) < e, * (u, U «S 5/2, I bt K ^ I bj

The motion x i—> ß^ßf :x BjB f xx + frj — BjB xfr^ has now all the required

properties.

3.2. Lemma B. // a g G satisfies m(A) < -, tfren a is a pwre

translation.

Proof. If G contains elements a satisfying 0 < m(A) ^ we consider

the one for which | a | is a minimum (2.4 (i)). Lemma A (applied to an

arbitrary unit vector u e EA) provides elements ß g G satisfying

(*) fr ^ 0 I fr1 K I fr£ I m(£) < I (m(A)-m1(A))
o

(c.f. 2.2. (iii)). Among these we again consider the one for which | b \

is a minimum ^ 0 Observe that | fr | ^ | a | if ß is not a translate m

by the choice of a.

The commutator ß [a, ß] satisfies

m(B) m([A, BJ) < 2m(A) m(B) ^ m(B)

(2.3), and we have by 2.1

b (A — id)bE H- (A — id)bE + r

r (id — B)b + A(id —

If ß is a translation, then B id B and therefore r 0.

If ß is not a translation, then | a | ^ | fr | (by the choice of a) and therefore

I r I ^ (m(B) + m(B)) | fr | ^ 2m(B) | fr | < 4m(£) | bE \. Hence, in either ca >e,
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Together with 2.2 (iv) we obtain

\SL\< 1
(m(A) + mL(A)) \ bE\<\BE\.

We find that p also satisfies (*), but with \ b\ m(A) \b \ —r < \ b\ a

contradiction.

3.3. End of proof Lemma A provides elements in G with n linearly
1

independent translation parts whose rotation parts are smaller than

By Lemma B these elements are pure translations.

4. Lattices

In this paragraph we collect the rudiments from lattice point theory
which are necessary for the proof of Theorem II. A lattice L is a crystallo-
graphic group which consists only of translations. The elements of L
(lattice points) will be identified with vectors in R". By abuse of notation,
we shall write co w trans co for co g L. It is well known that L is

isomorphic to Z" but this fact will not be used in our proof of Theorem II.
Notice, however that L is abelian and that the minimal distance of lattice
points equals the length of the smallest non-zero element in L.

4.1. Lemma. Let L be a lattice in R" whose elements have pairwise
distances ^ 1, and let N(p) denote the number of lattice points in L
whose distance from the origin is ^ p (p>0). Then

N(p)<(2p+ir.

Proof The open balls of radius ^ around the N(p) lattice points are

pairwise disjoint and all contained in a ball of radius p + ^. Comparing

the volumes we find N(p) (OX p H-
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