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Since A is an orthogonal map, the orthogonal complement E; of E,
is also an A-invariant linear subspace of R". We define

(i m*(4) = max { | Ax — x|/|x| | xe Ex\ {0} }
if E4 # {0} and set m*(4) = 0if E; = {0}. It follows that
(1i1) mL(A) < m(A)if A # id.

We let x = xE + xt, xXfe E,, x* € E4 be the orthogonal decomposition
of a vector x with respect to E, and E . The simple observation

(iv) | AxE — xE| = m(A) | x"|, | Ax" —x" [ < mH(A)| x|

together with (iii), will play a crucial role in the proof of Theorem L

2.3. Commutator estimate. For A, Be O(n) we have
m([A, B]) < 2m(A) m(B) .
Proof. Verify the identity
[A4, B] — id = ((A—id) (B—id) — (B—id) (A—id)A~'B~!
From| A 'B x| = | x| it then follows that
| [4, Bl x — x| < m(A) m(B) | x| + m(B) m(A) | x|
for all x e R".
24. Crystallographic groups. Discreteness and compactness of the fun-

damental domain will be used as follows:
A group G of rigid motions in R" is called crystallographic if

(1) for all t > O only finitely many oo € G have |a| < t,

(i) there is some constant d such that for each x € R” there is an element
a € G satisfying |a — x| < d.

3. PROOF OF THEOREM I
Now let G be an n-dimensional crystallographic group.

3i. LemMMA A (“Mini Bieberbach”). For each unit vector ueR" and for all
&3>0 there exists Be G satisfying

3
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b#0, ¥ Wb <o, mB)<ce.

Proof. By 2.4 (i1) there exists an element B, € G satisfying | b, — ku| < d
for each k = 1, 2... . The sequence B, B,, ... satisfies

)

bl =0,  xb)—>0 (k—oo).

Since O(n) is compact, we find a subsequence such that the rotation parts
B, also converge. Consequently there exist i < j such that

0
m(B;B; ') < ¢, ¥ (u, b)) <9/2, lbi|<2|bj|.

The motion x — B;B; 'x = B;B; 'x + b; — B;B; 'b, has now all the required
properties.

32. LemMa B. If aoeG satisfies m(A) < -, then o is a pure

O =

translation.

, we consider

DO =

Proof. If G contains elements o satisfying 0 < m(A) <

~

the one for which |a| is a minimum (2.4 (1)). Lemma A (applied to an

arbitrary unit vector u € E ;) provides elements B € G satisfying

(m(A)—m*(4))

Q0| =

(*) b#0, |b]<|bF], mB) <

(cf. 2.2. (iii)). Among these we again consider the one for which | "]
is a minimum (#0!). Observe that |b| > |a| if B is not a translatiin
by the choice of a. i

The commutator p = [a, B] satisfies

m(B) = m([A4, B]) < 2m(A) m(B) < m(B)
(2.3), and we have by 2.1
b

r

(A—id)bE + (A—id)b* + r,
(id—B)b + A(id—B)A™ 'a.

If B is a translation, then B = id = B and therefore r = 0.

If B is not a translation, then |a| < | b| (by the choice of o) and theref e
| 7| < (m(B)+m(B)) | b| < 2m(B) | b| < 4m(B) | b®|. Hence, in either cz,
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|r| < %(m(A)—ml(A)).l bE | .

Together with 2.2 (iv) we obtain
1
|6+ < 5(m(A)+mi(A))|bE| < |bE].

We find that B also satisfies (*), but with |b| < m(4)|b| —r < |b|, a
contradiction.

33. End of proof. Lemma A provides elements in G with n linearly
independent translation parts whose rotation parts are smaller than 7

By Lemma B these elements are pure translations.

4. LATTICES

In this paragraph we collect the rudiments from lattice point theory
which are necessary for the proof of Theorem II. A lattice L is a crystallo-
graphic group which consists only of translations. The elements of L
(lattice points) will be identified with vectors in R". By abuse of notation,
we shall write @ = w = trans® for e L. It is well known that L is
isomorphic to Z" but this fact will not be used in our proof of Theorem II.
Notice, however that L is abelian and that the minimal distance of lattice
points equals the length of the smallest non-zero element in L.

41. LEMMA. Let L be a lattice in R" whose elements have pairwise
distances > 1, and let N(p) denote the number of lattice points in L
whose distance from the origin is < p (p>0). Then

N(p) < 2p+1)".
1
Proof. The open balls of radius > around the N(p) lattice points are

pairwise disjoint and all contained in a ball of radius p + % Comparing

1\" n
the volumes we find N(p) <§> < (p + %) ,
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