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138 P. BUSER

use a method which is more in the spirit of Minkowski’s geometry of
numbers, from where Bieberbach’s original arguments departed.
Since the material is standard, the exposition will be condensed. Yet
some efforts have been made not to frustrate the reader by omitting details.
I would like to express my thanks to Leon Charlap, Bernhard Ruh,
Han Sah and Klaus Dieter Semmler for many stimulating conversations.

2. RIGID MOTIONS

In this section we fix the notation and collect the necessary (and
hopefully sufficient) rudiments from Linear Algebra.

We consider R" as an euclidean vector space with the standard inner
product. We use | x| to denote the length of a vector xeR”", and
X (x, y) € [0, ] to denote the angle between two vectors. A rigid motion «
(isometry of R") will be expressed in the form

Xt oax = Ax + a (xeR")
where A = rot o € O(n) 1s an orthogonal map, called the rotation part of a,

and o = trans o € R" 1s a vector, called the translation part.

2.1. The commutator [a, B] of two rigid motions x+> ax = Ax + a and
x +— Bx = Bx + b is defined as [o, B] = oo™ !B~ . The following formulae
are easily checked:

rot [o, B] = [A4, B]
trans [o, B] = (A—id)b + (id—[A, B])b + A(id—B)A™ 'a.

2.2. Rotations. For A € O(n) we define

m(A) = max{[Ax —xl/|x||xeR”\{0}}.
Note that | Ax — x| < m(A)| x| for x e R". The set
() Eq={ xeR" [ [Ax — x| = m(4)|x]

is a non trivial A-invariant subspace. This is immediately checked exce:t
perhaps for the part “x, y € E, implies x + y € E,”. This part follows fro 1
the equation
2m*(A) (x| >+ [y1%) = 20Ax—xI*+]Ay—y|?) = | Ax+y) — (x+y)|?
+ [ A(x—y) — (x=y) |? < m*(A) (Ix+y[ > +1x—y?) = 2m*(4) (x| >+ |yl *)
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Since A is an orthogonal map, the orthogonal complement E; of E,
is also an A-invariant linear subspace of R". We define

(i m*(4) = max { | Ax — x|/|x| | xe Ex\ {0} }
if E4 # {0} and set m*(4) = 0if E; = {0}. It follows that
(1i1) mL(A) < m(A)if A # id.

We let x = xE + xt, xXfe E,, x* € E4 be the orthogonal decomposition
of a vector x with respect to E, and E . The simple observation

(iv) | AxE — xE| = m(A) | x"|, | Ax" —x" [ < mH(A)| x|

together with (iii), will play a crucial role in the proof of Theorem L

2.3. Commutator estimate. For A, Be O(n) we have
m([A, B]) < 2m(A) m(B) .
Proof. Verify the identity
[A4, B] — id = ((A—id) (B—id) — (B—id) (A—id)A~'B~!
From| A 'B x| = | x| it then follows that
| [4, Bl x — x| < m(A) m(B) | x| + m(B) m(A) | x|
for all x e R".
24. Crystallographic groups. Discreteness and compactness of the fun-

damental domain will be used as follows:
A group G of rigid motions in R" is called crystallographic if

(1) for all t > O only finitely many oo € G have |a| < t,

(i) there is some constant d such that for each x € R” there is an element
a € G satisfying |a — x| < d.

3. PROOF OF THEOREM I
Now let G be an n-dimensional crystallographic group.

3i. LemMMA A (“Mini Bieberbach”). For each unit vector ueR" and for all
&3>0 there exists Be G satisfying
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