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A GEOMETRIC PROOF OF BIEBERBACH’S THEOREMS
ON CRYSTALLOGRAPHIC GROUPS

by Peter BUSER

Pour Ariane et Georges

1. INTRODUCTION

In 1910 Bieberbach proved two celebrated theorems in response to
Hilbert’s 18th problem.

THEOREM 1. Every discrete group of isometries acting on the n-dimensional
euclidean space R" with compact fundamental domain contains n linearly
independent translations.

Groups which satisfy the hypothesis of Theorem I are called n-dimensional
crystallographic groups.

THEOREM II.  For each fixed n there are only finitely many isomorphism
classes of n-dimensional crystallographic groups.

Bieberbach’s original proof of Theorem I is based on Minkowskr’s
Theorem on simultaneous rational approximation and is difficult to read.
Shortly after it came out, Frobenius gave a more accessible proof which is
based on an argument using the commutativity of unitary matrices. Fro-
benius’s method has, in one form or another, become standard in the
contemporary literature. -

In this note we present a completely different approach to Theorem I
which has its origins in Gromov’s work on almost flat manifolds [5].
The new idea is to start with those rigid motions which have a very small
rotation part (cf. § 2 for notation), and then proceed to show that, in fact,
these motions are pure translations. The simplification which results from
this approach is striking.

We also give a new proof of Theorem II which does not run via the
u:ual algebraic characterization of a crystallographic group. Instead we shall
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use a method which is more in the spirit of Minkowski’s geometry of
numbers, from where Bieberbach’s original arguments departed.
Since the material is standard, the exposition will be condensed. Yet
some efforts have been made not to frustrate the reader by omitting details.
I would like to express my thanks to Leon Charlap, Bernhard Ruh,
Han Sah and Klaus Dieter Semmler for many stimulating conversations.

2. RIGID MOTIONS

In this section we fix the notation and collect the necessary (and
hopefully sufficient) rudiments from Linear Algebra.

We consider R" as an euclidean vector space with the standard inner
product. We use | x| to denote the length of a vector xeR”", and
X (x, y) € [0, ] to denote the angle between two vectors. A rigid motion «
(isometry of R") will be expressed in the form

Xt oax = Ax + a (xeR")
where A = rot o € O(n) 1s an orthogonal map, called the rotation part of a,

and o = trans o € R" 1s a vector, called the translation part.

2.1. The commutator [a, B] of two rigid motions x+> ax = Ax + a and
x +— Bx = Bx + b is defined as [o, B] = oo™ !B~ . The following formulae
are easily checked:

rot [o, B] = [A4, B]
trans [o, B] = (A—id)b + (id—[A, B])b + A(id—B)A™ 'a.

2.2. Rotations. For A € O(n) we define

m(A) = max{[Ax —xl/|x||xeR”\{0}}.
Note that | Ax — x| < m(A)| x| for x e R". The set
() Eq={ xeR" [ [Ax — x| = m(4)|x]

is a non trivial A-invariant subspace. This is immediately checked exce:t
perhaps for the part “x, y € E, implies x + y € E,”. This part follows fro 1
the equation
2m*(A) (x| >+ [y1%) = 20Ax—xI*+]Ay—y|?) = | Ax+y) — (x+y)|?
+ [ A(x—y) — (x=y) |? < m*(A) (Ix+y[ > +1x—y?) = 2m*(4) (x| >+ |yl *)
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Since A is an orthogonal map, the orthogonal complement E; of E,
is also an A-invariant linear subspace of R". We define

(i m*(4) = max { | Ax — x|/|x| | xe Ex\ {0} }
if E4 # {0} and set m*(4) = 0if E; = {0}. It follows that
(1i1) mL(A) < m(A)if A # id.

We let x = xE + xt, xXfe E,, x* € E4 be the orthogonal decomposition
of a vector x with respect to E, and E . The simple observation

(iv) | AxE — xE| = m(A) | x"|, | Ax" —x" [ < mH(A)| x|

together with (iii), will play a crucial role in the proof of Theorem L

2.3. Commutator estimate. For A, Be O(n) we have
m([A, B]) < 2m(A) m(B) .
Proof. Verify the identity
[A4, B] — id = ((A—id) (B—id) — (B—id) (A—id)A~'B~!
From| A 'B x| = | x| it then follows that
| [4, Bl x — x| < m(A) m(B) | x| + m(B) m(A) | x|
for all x e R".
24. Crystallographic groups. Discreteness and compactness of the fun-

damental domain will be used as follows:
A group G of rigid motions in R" is called crystallographic if

(1) for all t > O only finitely many oo € G have |a| < t,

(i) there is some constant d such that for each x € R” there is an element
a € G satisfying |a — x| < d.

3. PROOF OF THEOREM I
Now let G be an n-dimensional crystallographic group.

3i. LemMMA A (“Mini Bieberbach”). For each unit vector ueR" and for all
&3>0 there exists Be G satisfying

3
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b#0, ¥ Wb <o, mB)<ce.

Proof. By 2.4 (i1) there exists an element B, € G satisfying | b, — ku| < d
for each k = 1, 2... . The sequence B, B,, ... satisfies

)

bl =0,  xb)—>0 (k—oo).

Since O(n) is compact, we find a subsequence such that the rotation parts
B, also converge. Consequently there exist i < j such that

0
m(B;B; ') < ¢, ¥ (u, b)) <9/2, lbi|<2|bj|.

The motion x — B;B; 'x = B;B; 'x + b; — B;B; 'b, has now all the required
properties.

32. LemMa B. If aoeG satisfies m(A) < -, then o is a pure

O =

translation.

, we consider

DO =

Proof. If G contains elements o satisfying 0 < m(A) <

~

the one for which |a| is a minimum (2.4 (1)). Lemma A (applied to an

arbitrary unit vector u € E ;) provides elements B € G satisfying

(m(A)—m*(4))

Q0| =

(*) b#0, |b]<|bF], mB) <

(cf. 2.2. (iii)). Among these we again consider the one for which | "]
is a minimum (#0!). Observe that |b| > |a| if B is not a translatiin
by the choice of a. i

The commutator p = [a, B] satisfies

m(B) = m([A4, B]) < 2m(A) m(B) < m(B)
(2.3), and we have by 2.1
b

r

(A—id)bE + (A—id)b* + r,
(id—B)b + A(id—B)A™ 'a.

If B is a translation, then B = id = B and therefore r = 0.

If B is not a translation, then |a| < | b| (by the choice of o) and theref e
| 7| < (m(B)+m(B)) | b| < 2m(B) | b| < 4m(B) | b®|. Hence, in either cz,
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|r| < %(m(A)—ml(A)).l bE | .

Together with 2.2 (iv) we obtain
1
|6+ < 5(m(A)+mi(A))|bE| < |bE].

We find that B also satisfies (*), but with |b| < m(4)|b| —r < |b|, a
contradiction.

33. End of proof. Lemma A provides elements in G with n linearly
independent translation parts whose rotation parts are smaller than 7

By Lemma B these elements are pure translations.

4. LATTICES

In this paragraph we collect the rudiments from lattice point theory
which are necessary for the proof of Theorem II. A lattice L is a crystallo-
graphic group which consists only of translations. The elements of L
(lattice points) will be identified with vectors in R". By abuse of notation,
we shall write @ = w = trans® for e L. It is well known that L is
isomorphic to Z" but this fact will not be used in our proof of Theorem II.
Notice, however that L is abelian and that the minimal distance of lattice
points equals the length of the smallest non-zero element in L.

41. LEMMA. Let L be a lattice in R" whose elements have pairwise
distances > 1, and let N(p) denote the number of lattice points in L
whose distance from the origin is < p (p>0). Then

N(p) < 2p+1)".
1
Proof. The open balls of radius > around the N(p) lattice points are

pairwise disjoint and all contained in a ball of radius p + % Comparing

1\" n
the volumes we find N(p) <§> < (p + %) ,
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4.2, LEmMMA. Let L be a lattice in R" whose elements have pairwise
distances > 1 and consider a linear subspace E of R" which is spanned
by k wvectors wy,..,w,e€L. If a lattice point we L is not contained
in E, then its E*-component w* has length

|wh | = B+ wy|+..+w)".

Proof. Let N be the integer part of 3+ |w,|+...+|w, )" If0 < | w* | < 1/N,
then 0, w, 2w, ..., Nw have distance < 1 from E. Adding suitable integer linear
combinations of w,, .., w, to each of these vectors we obtain N + 1 new
pairwise different lattice points whose E+ components have not changed but

1
whose E components are < 7 (w4 ...+ |w]). These N + 1 lattice points have

: 1 .. _
distance < 1 +§(|wll+...+lwk|) from the origin, a contradiction to

Lemma 4.1.

5. PROOF OF THEOREM II

For an n-dimensional crystallographic group G we let I(G) be the sub-
group consisting of all pure translations in G. By Theorem I, L(G) 1s a
lattice in R”. The standard observation which is “responsible” for Theorem !l
1s

51. Lemma. If aeG and if weL(G), then A(w)e L(G),(A=rota.

Proof. Recall that w = trans @, ® € I(G). Now awo '€ G is a trans-
lation with translation vector A(w). Hence A(w) € L(G).

5.2. Definition. A crystallographic group is called normal if

(i) the vectors in L(G) have pairwise distances > 1

(i) L(G) contains n linearly independent unit vectors.

We do not ask that the vectors in (ii) generate the entire lattice I(G .
Our idea is to count the normal groups. This will suffice due to th:
following.

5.3. PROPOSITION. Each crystallographic group G is isomorphic to a norme!
crystallographic group.
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Proof. By scaling we may assume that the shortest non zero vector in
I(G) is a unit vector. Now assume by induction that I(G) satisfies 5.2 (1)
and contains k < n unit vectors wy, ..., w, which span a k-dimensional linear
subspace E of R™ It remains to find a group G’ isomorphic to G such that
L(G) contains k + 1 linearly independent unit vectors and also satisfies
5.2 (1).

If for some o € G and for some w{i<k) the vector A(w;) is not contained
in E, then by Lemma 5.1 A(w;) € L(G) is already the (k+ 1)-st vector and we
are done.

If on the other hand all rotation parts of G leave E—and consequently E*—
invariant, then the affine transformations @, given by

O, (x*+x) = xF + px*

(1>0) commute with the rotation parts of G. Therefore, the affine conjugate
(and henceforth isomorphic) groups G, = ®, G ® ;! also act by rigid motions.
Since (G,) = @, (L(G)), Lemma 4.2 implies that G, violates 5.2 (i) if p > 0
is very small. Hence there exists a minimal p’ > 0 such that G, satisfies
5.2 (i). Since the affine transformations ®, act trivially on E, the shortest
vector in L(G,)\E must be a unit vector and wy, .., w, € L{(G,). Now G
has the required properties and Proposition 5.3 is proved.

54. The proof of Theorem Il now proceeds in two steps.

Step 1. Each normal crystallographic group G is uniquely characterized by
a group table ((i1) below ).

Proof. Fix n linearly independent unit vectors w,,..w, € L(G) and
consider the sublattice

L={mw, +..+mw,| m,.,me 7).

L'is a subgroup of G. In each right coset modulo L of G we select a
representative @ whose translation part w has length

. 1 n
(1) |w| < §(|w1|+...+|w,,|) =5
Since G is discrete (2.4. (i), there are only finitely many such representatives,

4y ®,14,..,0y. Every € G can now be expressed in a unique way in
the form

o= mw,+..+mw,)o,
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where n + 1 < v < N. Since our L is isomorphic to Z", G is uniquelyt
determined (up to isomorphism) by the integers m;;, Vv(j, k) and N which occur
in the table

(11) OJJO)k — (mljkwl —}-...-{-m,,jkw,,) (‘Ov(j,k) 5 j, k == 1, seny N .

(For i=1, .., n, o; is the translation by w)).
Clearly, the proof of Theorem II will be completed by

Step 2. The absolute values of mj, v(j, k) and N in (i) have an upper
bound which depends only on the dimension n (see (i) and (iv)
below ).

Proof. The euclidean motions ®,; ), ®; and w, in (ii) have translation

n . .

parts of length < E(C.f. (1)). Consequently the translation m; ;w; + ... + m,;w,
i 3n :

= 0,00 K has length < > In particular,

3n
lmUkW;L[S'_ lzla"'sn

2 ?

where wi is the component of w; perpendicular to the hyperplane E spanncd
by Wy, ey Wi_ 1> Wisqs . W,. By Lemma 4.2 we have | wi | = (n+2)™". Hence

i | m ] < a2y

Now let us estimate N. The linear transformation A = rota, e G is
uniquely determined by its images A(w,), i = 1, .., n. By Lemma 5.1 each
these images is a unit vector of L(G) and, by Lemma 4.1, one out of it
most 3" candidates. It follows that at most (3")" different rotation pa:is
occur in G.

If two elements ®, and ®, among ®,,,, .., ®y have the same rotaticn

part, then o0, " is a vector of length < g +g (cf. (1)) and, again by
Lemma 4.1, one out of at most (2n+ 1)" candidates. Hence
(iv) N<n+ 3 2n+1).

Since W(i, j) < N, this concludes the proof of Theorem II.
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Remark. From the preceding proof we can derive the upper bound

exp exp 4n” for the number of isomorphism classes of n-dimensional crystallo-
oraphic groups. The correct numbers for n = 1,2,3,4 are respectively
2,17, 219, 4783 [4].
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