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Chapitre VI

LA FORMULE INTEGRALE DE HECKE

Le but de ce chapitre est d’utiliser la formule établie dans le théoréme 1,
dans le cas particulier ou k est le corps Q et E un corps de nombres
sur Q, afin d’obtenir la formule intégrale de Hecke classique (Réf. [H]).
Dans un premier paragraphe on construira une application de 'ensemble des
matrices G(Q)Z(A)\G(A) dans 'ensemble G(Z) - Z \G(R) des matrices reelles
et on calculera 'image par cette application du tore T(Q)Z(A)\T(A). Dans
le deuxieme paragraphe, on utilisera cette application pour retrouver la for-
mule de Hecke a partir de l'identité du chapitre précédent (Théoréme 1).

1. LA PROJECTION DE G(Q)Z(A)\G(A) SUR LA PLACE A L’INFINI

A. La projection m,: G(Q)Z(A)\G(A) » ZOOG(Q)\G(A)/G(Z)

L'ensemble Z_ désigne le sous-groupe de G(A) constitué des matrices z
telles que z,, soit une matrice scalaire non nulle et z, est la matrice identité
pour tout nombre p premier.

Soient M € G(A) et z € (A) avec

ou pour p fini, on exige que z,e L, pour presque tout p et z,€Q,
pour tout p.

Soit § Pensemble des nombres premiers p tels que z,¢Z, et soit p
un élément de S, il existe un entier n, verifiant

prrz, el .
Soit Q la matrice scalaire de Z(Q) dont les éléments diagonaux valent

[} pme: Z(Q est une matrice de Z_, - G(Z).

pes
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Soit (ZQ), la matrice adélique coincidant avec ZQ aux places finies
et égale a 1 a la place infinie, et (ZQ), la matrice adélique égale 3
Z .0 a la place infinie et égale a 1 aux places finies; on a la décomposition
suivante:

ZM = Z7ZQ-Q 'M
= (20), - (2Q);- Q™ 'M
= (2Q)., Q" 'M(ZQ);, .
Ce qui précéde montre que la projection m; qui a un ¢lément de

G(Q)Z(A)\G(A) fait correspondre la classe dans Z G(Q\G(A)/G(Z) d’un
représentant quelconque de cet élément, est bien définie.

B. Il y a une bijection m, entre G(Q)\G(A)/G(Z) et G(Z)\G(R)

En effet, on considere lapplication de G(R) dans G(Q)\G(A)/G(Z) qui a
une matrice g de G(R) associe la classe de (g, 1, .., 1,..) dans G(Q)\G(A)
/G(Z). Cette application est surjective puisquon a la décomposition bien
connue de G(A): |

G(A) = G(Q)- G*(R)- G(Z)

(voir par exemple [5], pp. 143-146 pour le cas n = 2 et la démonstraticn
est la méme pour n quelconque).

Supposons que les matrices g et g’ aient la méme image. Alors on a
une ¢galité

vgk = v g' k',
avec vy, Y € G(Q) et k, k' e G(Z); par suite
Yy =gkkTlg Tl =gg kKT

Mais lintersection G(Q) n G(R) - G(Z) est réduite a G(Z); cela entralie
I'existence d’un élément o de G(Z) tel que

Y =yo, g¢g=o0g, k=ok.

Ainsi g et g ont la méme image si et seulement si ces matrices so t
congrues modulo G(Z). On a démontré:

ProrosiTiON 10. L’application m, o1, ou

n,: GQZ(ANG(A) ~ Z,,G(Q\G(A)/G(Z) L
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el
n: Z,GQ\G(A)/G(Z) - Z(R)G(Z)\G(R)

sont définies comme précédemment, nest autre que la projection canonique de
GQ)Z(A\G(A) sur Z(R)G(Z)\G(R).

C. L'image du tore T(A) dans Z(R)G(Z)\G(R)
L'image de T(Q)Z(A)\T(A) dans Z_G(Q)\G(A )/G( ) est

Z,T(Q\TA)/TZ).

Dans le cas particulier ou l'on considére un corps de nombres E sur Q,
muni d’'une base fondamentale (®,, .., ®,), on déduit de la proposition 3
du chapitre II et de la remarque qui suit qu’il y a un isomorphisme v
de T(Q)\T(A)/T(Z), sur E"\AE/(H r,), ou rﬁAdésigne le sous-anneau
compact maximal de E,. Ainsi Z,T(Q)\T(A)/T(Z) s’identifie a I'ensemble
R -E\AF/]r 4) qui se projette dans le groupe des classes d’idéaux
de E

ELENAZ[]r))

ou on a not¢ E, le produit des complétés aux places infinies [] E,.

vePOC

Soient h le nombre de classes de E et (a)) un systeme de représentants

Fj=t1an’
de ces classes dans A, on a une bijection

ENA/(Tr) - U a-(RMNEY).

j=lah

En combinant cette bijection avec I'isomorphisme

Z,TQ\T(A)T(Z) > R* - E\A/([]r))

on peut écrire
Z.TQ\TAYTZ) = |J H;(Z.,T@)\TA)),

ou la réunion est d1SJomte et ou la classe de la matrice H;e T(A) dans
T, (A)- (Q)\T(A)/T(Z) correspond a la classe de lelement a; de Ajg
dans EZ - EX\AZ/(['] ). On choisit de plus H; telle que

(H), = 1.

On cherche & présent 'image du quotient ZOOT(Q)\T(A)/T(Z) dans
Z(R)G(Z)\G(R). Si on note h; 'image de la matrice H; dans Z(R)G(Z)\G(R)
Aloss limage de Z,, TQ\T(A)/T(Z) est |J h{Z(R)T(Z)\T(R)).

j=lah
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Reste & déterminer un systéme de matrices ;. Pour chaque élément a;

de A7 dans le systeme de représentants des classes d’idéles, on note
a; = [o,;,...,%,;] un idéal de E dont la classe correspond par I (voir la
proposition du chapitre II) a la classe q;.

Définition 1. On note P; I'élément de G(Q), matrice de passage de la base
fondamentale (®,, .., ®,) de E a la base [a,;, .., a,;] de I'idéal a;, dont la
i¢ ligne est constituée des coordonnées du vecteur «;; dans la base
(©q, ., ©,).

D’autre part, on a le diagramme d’isomorphismes commutatif suivant
deduit de la proposition 4 du chapitre II

EXNAG(Tr; = TJAN\TAYTZ) < G.(A\GA)GZ)

1

Ig | Ir | Ir |t

~

Idéaux de E

i

Q7! (ldéaux de E) < Réseaux de Q"

Le réseau image par I de la matrice (1, P;, ..., P;, ..) de G(A) est le réseau
associ¢ a l'idéal a; par l'application Q~'. En effet, quelque soit la place »
finie, les vecteurs qui engendrent le réseau (rj- P;) ont pour coordonnées
dans la base canonique les coordonnées de a;,..,a,; dans la ba:z
(@1, .y ©).

On en déduit que

nj

H;, = (L[[(H), = 1, P, .., P;,..) mod G(Z)

p

et par suite la matrice h; est I'image de (1, P
cest-a-dire P '. Par suite:

. P;,..) dans Z  G(Z)\G(R:,

j,..

ProPOSITION 11. L’image du tore Z  T(Q)\T(A)/ T(Z) dans
Z(R)G(Z)\G(R)

h
est la réunion U P; '+ (Z(R)T(Z)\T(R)).

j=1
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