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Chapitre VI

La formule intégrale de Hecke

Le but de ce chapitre est d'utiliser la formule établie dans le théorème 1,

dans le cas particulier où k est le corps Q et E un corps de nombres

sur Q, afin d'obtenir la formule intégrale de Hecke classique (Réf. [H]).
Dans un premier paragraphe on construira une application de l'ensemble des

matrices G(Q)Z(A)\G(A) dans l'ensemble G(Z) • ZJ\G(R) des matrices réelles

et on calculera l'image par cette application du tore T(Q)Z(A)\T(A). Dans
le deuxième paragraphe, on utilisera cette application pour retrouver la
formule de Hecke à partir de l'identité du chapitre précédent (Théorème 1).

1. La projection de G(Q)Z(A)\G(A) sur la place à l'infini
A. La projection n, : G(Q)Z(A)\G(A) -> Z G(Q)\G(A)/G(2)

L'ensemble Zœ désigne le sous-groupe de G(A) constitué des matrices z
telles que zœ soit une matrice scalaire non nulle et zp est la matrice identité
pour tout nombre p premier.

Soient M e G(A) et z e (A) avec

Z

où pour pfini, on exige que zpe Zp pour presque tout p et zpeQp
pour tout p.

Soit S l'ensemble des nombres premiers p tels que zp<£ Zp et soit p
un élément de S, il existe un entier np vérifiant

pnp'zpez;
Soit Q la matrice scalaire de Z(Q) dont les éléments diagonaux valent

fi P"p; ZQ est une matrice de Z^ • G(Z).
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Soit (ZQ)f la matrice adélique coïncidant avec ZQ aux places finies

et égale à 1 à la place infinie, et (ZQ)œ la matrice adélique égale à

Z^Q à la place infinie et égale à 1 aux places finies; on a la décomposition
suivante :

ZM - ZQ-Q-'M
(ZQ)o0-(ZQ)f

(ZQ)xQ-'M(

Ce qui précède montre que la projection qui a un élément de

G(Q)Z(A)\G(A) fait correspondre la classe dans Z00G(Q)\G(A)/G(Z) d'un

représentant quelconque de cet élément, est bien définie.

B. Il y a une bijection n2 entre G(Q)\G(A)/G(Z) et G(Z)\G(R)

En effet, on considère l'application de G(R) dans G(Q)\G(A)/G(Z) qui a

une matrice g de G(R) associe la classe de (g, 1,..., 1,...) dans G(Q)\G(A)

/G(Z). Cette application est surjective puisqu'on a la décomposition bien

connue de G(A) :

G(A) G(Q).G+(R).G(Z)

(voir par exemple [5], pp. 143-146 pour le cas n 2 et la démonstration

est la même pour n quelconque).

Supposons que les matrices g et g' aient la même image. Alors on a

une égalité

ygk Y g' k',

avec y, y' g G(Q) et k, k' e G(Z) ; par suite

Y"1 y' g kk'-1 g1'1g g''1 kk''1

Mais l'intersection G(Q) n G(R) • G(Z) est réduite à G(Z) ; cela entrai; s

l'existence d'un élément a de G(Z) tel que

Y ycr, g <sg', k ak'.

Ainsi g et g' ont la même image si et seulement si ces matrices so t

congrues modulo G(Z). On a démontré :

Proposition 10. L'application n2 ° n1 où

n, : G(Q)Z(A)\G(A) ZœG(Q)\G(A)/G(Z)
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et

ti2: ZÛ0G(Q)\G(A)/G(Z) - Z(R)G(Z)\G(R)

sont définies comme précédemment, n'est autre que la projection canonique de

G(Q)Z(A)\G(A) sur Z(R)G(Z)\G(R).

C. L'image du tore T(A) dans Z(R)G(Z)\G(R)

L'image de T(Q)Z(A)\T(A) dans Z^GCQAGfAJ/G^) est

Z„T(Q)\T(A)/T(Z).

Dans le cas particulier où l'on considère un corps de nombres E sur Q,

muni d'une base fondamentale (oeq,coj, on déduit de la proposition 3

du chapitre II et de la remarque qui suit qu'il y a un isomorphisme v
de T(Q)\T(A)/T(Z), sur £x\A^/(]71 où r^ désigne le sous-anneau

compact maximal de E^. Ainsi ZœT(Q)\T(A)/T(Z) s'identifie à l'ensemble
Rx • LX\A£/(]"] r^) qui se projette dans le groupe des classes d'idéaux
de E

E^E*\AÏ/(ftr;),
où on a noté Eœ le produit des complétés aux places infinies Yl ^v

veP
•

00

Soient h le nombre de classes de E et i^j)j=läh, un système de représentants
de ces classes dans A£x on a une bijection

R*.£*\A*/(nr;)^ y
j l à h

En combinant cette bijection avec l'isomorphisme

ZcoT(Q)\ T(A)/T(Z) ^ R* • £x\A£7(n rp
on peut écrire

ZœT(Q)\T(A)/T(Z) y Hj-(ZXT(Z)\TJA)),
j — làh

où la réunion est disjointe et où la classe de la matrice Hj e T(A) dans
T, {\) T(Q)\T(A)/T(Z) correspond à la classe de l'élément a,, de AE

dans E* r*).Onchoisit de plus Hj telle que

(Hj)œ1

On cherche à présent l'image du quotient Zœ T(Q)\ dans
Z(R)G(Z)\G(R). Si on note h] l'image de la matrice Hj dans Z(R)G(Z)\G(R)
alo.-s l'image de ZœT(Q)\T(A)/T(Z) est [j
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Reste à déterminer un système de matrices hj. Pour chaque élément
de A £ dans le système de représentants des classes d'idèles, on note

aj Laia„j] un idéal de E dont la classe correspond par IE (voir la

proposition du chapitre II) à la classe aj.

Définition 1. On note Pj l'élément de G(Q), matrice de passage de la base

fondamentale (<%,co„) de E à la base [au,0Lnj\ de l'idéal aj9 dont la

E ligne est constituée des coordonnées du vecteur oc,-7- dans la base

(©!,-, COj.

D'autre part, on a le diagramme d'isomorphismes commutatif suivant
déduit de la proposition 4 du chapitre II

E*x\Al/(Y\r; ^ TX(A)\T(A)/T(Z)<= GJA)\G(A)/G(Z)

Ie 1 ' It 11 It ï 1

Idéaux de E ^ Q.'1 (Idéaux de E) <= Réseaux de Q"

Le réseau image par IT de la matrice (1, Pj,..., Pj9...) de G(A) est le réseau

associé à l'idéal aj par l'application D"1. En effet, quelque soit la place v

finie, les vecteurs qui engendrent le réseau (r"*Pj) ont pour coordonnées

dans la base canonique les coordonnées de o^j*..., anj dans la ba^e

(coi,..., coJ.

On en déduit que

Hj (1, n (Hj)p) (1, Pj,Pj,...) mod G(Z)
P

et par suite la matrice h-} est l'image de (1, Pj,..., Pj,...) dans Z00G(Z)\G(R),
c'est-à-dire Pj1. Par suite:

Proposition 11. L'image du tore Z00T(Q)\7n(A)/T(Z) dans

Z(R)G(Z)\G(R)

h

est la réunion (J Pj1 • (Z(R)T(Z)\T(R)).
j= i
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