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Chapitre VI

LA FORMULE INTEGRALE DE HECKE

Le but de ce chapitre est d’utiliser la formule établie dans le théoréme 1,
dans le cas particulier ou k est le corps Q et E un corps de nombres
sur Q, afin d’obtenir la formule intégrale de Hecke classique (Réf. [H]).
Dans un premier paragraphe on construira une application de 'ensemble des
matrices G(Q)Z(A)\G(A) dans 'ensemble G(Z) - Z \G(R) des matrices reelles
et on calculera 'image par cette application du tore T(Q)Z(A)\T(A). Dans
le deuxieme paragraphe, on utilisera cette application pour retrouver la for-
mule de Hecke a partir de l'identité du chapitre précédent (Théoréme 1).

1. LA PROJECTION DE G(Q)Z(A)\G(A) SUR LA PLACE A L’INFINI

A. La projection m,: G(Q)Z(A)\G(A) » ZOOG(Q)\G(A)/G(Z)

L'ensemble Z_ désigne le sous-groupe de G(A) constitué des matrices z
telles que z,, soit une matrice scalaire non nulle et z, est la matrice identité
pour tout nombre p premier.

Soient M € G(A) et z € (A) avec

ou pour p fini, on exige que z,e L, pour presque tout p et z,€Q,
pour tout p.

Soit § Pensemble des nombres premiers p tels que z,¢Z, et soit p
un élément de S, il existe un entier n, verifiant

prrz, el .
Soit Q la matrice scalaire de Z(Q) dont les éléments diagonaux valent

[} pme: Z(Q est une matrice de Z_, - G(Z).

pes
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Soit (ZQ), la matrice adélique coincidant avec ZQ aux places finies
et égale a 1 a la place infinie, et (ZQ), la matrice adélique égale 3
Z .0 a la place infinie et égale a 1 aux places finies; on a la décomposition
suivante:

ZM = Z7ZQ-Q 'M
= (20), - (2Q);- Q™ 'M
= (2Q)., Q" 'M(ZQ);, .
Ce qui précéde montre que la projection m; qui a un ¢lément de

G(Q)Z(A)\G(A) fait correspondre la classe dans Z G(Q\G(A)/G(Z) d’un
représentant quelconque de cet élément, est bien définie.

B. Il y a une bijection m, entre G(Q)\G(A)/G(Z) et G(Z)\G(R)

En effet, on considere lapplication de G(R) dans G(Q)\G(A)/G(Z) qui a
une matrice g de G(R) associe la classe de (g, 1, .., 1,..) dans G(Q)\G(A)
/G(Z). Cette application est surjective puisquon a la décomposition bien
connue de G(A): |

G(A) = G(Q)- G*(R)- G(Z)

(voir par exemple [5], pp. 143-146 pour le cas n = 2 et la démonstraticn
est la méme pour n quelconque).

Supposons que les matrices g et g’ aient la méme image. Alors on a
une ¢galité

vgk = v g' k',
avec vy, Y € G(Q) et k, k' e G(Z); par suite
Yy =gkkTlg Tl =gg kKT

Mais lintersection G(Q) n G(R) - G(Z) est réduite a G(Z); cela entralie
I'existence d’un élément o de G(Z) tel que

Y =yo, g¢g=o0g, k=ok.

Ainsi g et g ont la méme image si et seulement si ces matrices so t
congrues modulo G(Z). On a démontré:

ProrosiTiON 10. L’application m, o1, ou

n,: GQZ(ANG(A) ~ Z,,G(Q\G(A)/G(Z) L
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el
n: Z,GQ\G(A)/G(Z) - Z(R)G(Z)\G(R)

sont définies comme précédemment, nest autre que la projection canonique de
GQ)Z(A\G(A) sur Z(R)G(Z)\G(R).

C. L'image du tore T(A) dans Z(R)G(Z)\G(R)
L'image de T(Q)Z(A)\T(A) dans Z_G(Q)\G(A )/G( ) est

Z,T(Q\TA)/TZ).

Dans le cas particulier ou l'on considére un corps de nombres E sur Q,
muni d’'une base fondamentale (®,, .., ®,), on déduit de la proposition 3
du chapitre II et de la remarque qui suit qu’il y a un isomorphisme v
de T(Q)\T(A)/T(Z), sur E"\AE/(H r,), ou rﬁAdésigne le sous-anneau
compact maximal de E,. Ainsi Z,T(Q)\T(A)/T(Z) s’identifie a I'ensemble
R -E\AF/]r 4) qui se projette dans le groupe des classes d’idéaux
de E

ELENAZ[]r))

ou on a not¢ E, le produit des complétés aux places infinies [] E,.

vePOC

Soient h le nombre de classes de E et (a)) un systeme de représentants

Fj=t1an’
de ces classes dans A, on a une bijection

ENA/(Tr) - U a-(RMNEY).

j=lah

En combinant cette bijection avec I'isomorphisme

Z,TQ\T(A)T(Z) > R* - E\A/([]r))

on peut écrire
Z.TQ\TAYTZ) = |J H;(Z.,T@)\TA)),

ou la réunion est d1SJomte et ou la classe de la matrice H;e T(A) dans
T, (A)- (Q)\T(A)/T(Z) correspond a la classe de lelement a; de Ajg
dans EZ - EX\AZ/(['] ). On choisit de plus H; telle que

(H), = 1.

On cherche & présent 'image du quotient ZOOT(Q)\T(A)/T(Z) dans
Z(R)G(Z)\G(R). Si on note h; 'image de la matrice H; dans Z(R)G(Z)\G(R)
Aloss limage de Z,, TQ\T(A)/T(Z) est |J h{Z(R)T(Z)\T(R)).

j=lah
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Reste & déterminer un systéme de matrices ;. Pour chaque élément a;

de A7 dans le systeme de représentants des classes d’idéles, on note
a; = [o,;,...,%,;] un idéal de E dont la classe correspond par I (voir la
proposition du chapitre II) a la classe q;.

Définition 1. On note P; I'élément de G(Q), matrice de passage de la base
fondamentale (®,, .., ®,) de E a la base [a,;, .., a,;] de I'idéal a;, dont la
i¢ ligne est constituée des coordonnées du vecteur «;; dans la base
(©q, ., ©,).

D’autre part, on a le diagramme d’isomorphismes commutatif suivant
deduit de la proposition 4 du chapitre II

EXNAG(Tr; = TJAN\TAYTZ) < G.(A\GA)GZ)

1

Ig | Ir | Ir |t

~

Idéaux de E

i

Q7! (ldéaux de E) < Réseaux de Q"

Le réseau image par I de la matrice (1, P;, ..., P;, ..) de G(A) est le réseau
associ¢ a l'idéal a; par l'application Q~'. En effet, quelque soit la place »
finie, les vecteurs qui engendrent le réseau (rj- P;) ont pour coordonnées
dans la base canonique les coordonnées de a;,..,a,; dans la ba:z
(@1, .y ©).

On en déduit que

nj

H;, = (L[[(H), = 1, P, .., P;,..) mod G(Z)

p

et par suite la matrice h; est I'image de (1, P
cest-a-dire P '. Par suite:

. P;,..) dans Z  G(Z)\G(R:,

j,..

ProPOSITION 11. L’image du tore Z  T(Q)\T(A)/ T(Z) dans
Z(R)G(Z)\G(R)

h
est la réunion U P; '+ (Z(R)T(Z)\T(R)).

j=1
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7. LA FORMULE INTEGRALE DE HECKE

On suppose toujours que E un corps de nombres sur Q. En choisissant
pour ¢ la matrice identite, la formule adélique donnée dans le théoréme 1
du chapitre précédent devient

J E(p, x, ®) dHZ\T(x) = (o, (DONE/Q) .
T(Q)Z(AN\T(A)

On définit le quasi-caractére ® de A*/Q™ de la maniére suivante:
oft) =|t|y, teA”,
avec se Cet o = Res > 1.
Ainsi
®o Ngolt) = |t|y,, teAg.
On définit la fonction @ de ¥(V(A)) par
¢ = ]]o,
avec, pour les places finies,
0ty = 1u,(t,), L,eE®Q,.

ou ¥, est la fonction caractéristique du reseau L, engendre dans E ® Q,
par la base fondamentale (®,, ..., ®,) de E sur Q.

On note p, comme au chapitre II, I'isomorphisme de E ® Q, sur

[[E; le réseau L, ¢étant engendré par une base fondamentale, on a
#lp

up(Lp) = l—[ r/l )
#lp
de sorte que
on,t =1 XV s -
#lp

Pour la place infinie, on pose

P () =e ™Y, teEQR,

avec la fonction F déﬁnie‘par

ri ry+ry
F(t) = ,Z oi(t)* + 2 ZH |olt) 12,

O (0;);<;<,, désignent les r; plongements de E dans R, (o)

i/ry+1<isri+ry
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les r, plongements de E dans C non conjugués deux a deux et

Gr;+r2+i = Gr1+i pour ]‘ < i S r2 .

La fonction F peut également s’exprimer pour un élément t = t,0; + ..
+ t,0, de E ® R de la maniére suivante:

rl - .
F(tyo, +..+t,0,) = > (t,oP+..+t,0P)?
i=1

r1+r2 . N . - tnl
+2 Y t,0fP + .+ 6,097 = (t, . t,)A A : ,
i:r1+1 t

ou on a noté¢ ' = ofw;) et A la matrice

ol .. oW

o® .. o®

n

Enfin, on note comme au chapitre V:

pg la mesure de Haar sur A; obtenue en prenant py = [[p, avec
dx

w,(r,) = 1 pour toute place finie 4 de E, du,(x) = x| pour les places
X

réelles de E et du(x) = | x| ~%.|dx A dx| pour les places complexes de L,
iy la mesure de Haar sur T(A) et T(Q)\T(A),
i la mesure de Haar sur A*, Q*\A™ et Z(Q)\Z(A),
2 r la mesure de Haar sur T(Q)Z(A)\T(A) .

A) Calcul de (o, (DONE/Q)

Pour o > 1, on a les égalités suivantes:

Ag

L, @ Ngq) = j L P@) |t lhg dug(t) = I;IJ st 1, 1P dt,)
E
#

(cf. [6], Prop. 10, p. 119).
Alors en utilisant [6], Prop. 11, p. 120 et lemme 8, p. 127, on obtien

{9 @oNpg) = n7H2 r(%) @y ey T (=)

# fini

ou n, désigne une uniformisante de E,. Notons
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G (s) = n "2 F(%) - (2m)2 T T(s)s

alors
(@, @°Ngig) = Gools) * Cels)

ou {; désigne la fonction zeta de Dedekind de I’extension E.

B) Calcul de l'intégrale toroidale

Dans la suite, on notera I I'intégrale toroidale:

I = j E(o, x, ®)duz r(x) .
T(Q)Z(ANT(A)

On a vu que I'image par m, du quotient (T(Q)Z(A)\T(A)) est
2. TQ\TA)T(Z)
Mais ce groupe est isomorphe au quotient suivant:

(TQ)Z(ANT(A)T(Z)/Z(2))

LEMME. Soit & un élément de G(Z); alors
E(p, x§, ®) = E(o, x, ®) .
Démonstration. On a

E(p,x,0) = > Mo, yx, o)
yeP(QN\G(Q)

et

M(o, x, ®) = IdetXIi’j oet x) - | £ |X du(t) .

A

Il suffit de montrer
M((P’ X, ('0) = M((Pa XE_,, (D) .

Mais £e G(Z) donc |det&|, = 1; de plus en chaque place finie p,
S, € G(Z,) donc et,x, e L, si et seulement si et,x,£,€ L,, ce qui prouve le
lemme.

p’

Le groupe T(Z)/Z(Z) étant compact, on choisit une mesure de Haar
sur celui-ci de maniére a ce qu’il soit de mesure 1. Si on prend sur le
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groupe Z, T(Q)\T(A)/T(Z) la mesure quotient notée fiz\r, on obtient comme
nouvelle expression de l'intégrale I

I = J‘ ~ E((Pa X, (D) dllZ\T(x) 5
Z,,TQ\T(A)/T(Z)

puisque la série E est invariante par 'action de T(Z).
On a vu que le quotient Z_ T(Q)\T(A)/ T(Z) s’écrit comme une réunion
disjointe

b

U {Z(R)T(Z)\T(R)).

Notons py_ la mesure induite par pzr sur le quotient Z(R)T(Z)\T(R);
alors

I = J i E(p, Hjx, o)dpr (x).

ZR)T(Z)\TR) j=1

Pour chaque indice j de 1 a h, les matrices H; et (h;,1,..,1,.)
= (P; %, 1,..,1,..) sont dans une méme classe de G(Q)\G(A)/G(Z). (Cf. la
remarque au-dessus de la proposition 11).

Comme les séries E sont invariantes par I'action de G(Q) a gauche et de

G(Z) a droite, on obtient
h
I = f Y. E(o, hyx, o)dur_(x).
ZR)T(Z)\TR) j=1

On calcule a présent les séries E(op, x, ®) dans le cas particulier o
x = (x,, 1, .., 1). Alors

E(@4(Xe, 1, ooy 1,-..),w)=ldetxoo|s'J [tIx - ) @Emx)du()
Q*\A~

£eV(Q) — {0}

= | det x, |° | 21X+ @(Erx)dp(r)

EeV(Q) — {0} jRI‘HZ*
P

+ oo d
= |detx, [*+ D (J‘ 1@ (EEx )7 I J . (pp(ét)dup(t)> -
eV @-10) \J o »Jz,

Soit £ un élément de V(Q) — {0}, de coordonnées (&, .., £,); alors I'intégral

J Lo JEt)dp(t) est non nulle lorsque
z

p

Ma'x(lE.bllp) swey 'E.bnlp) S 1
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Pour que le produit sur I'ensemble des nombres premiers des intégrales
précédentes soit non nul, il faut donc choisir £ de coordonnées (&),
verifiant :

&€ ()(QNZ,);

donc ; doit étre un élément de Z. Par conséquent

+ o

E(@, (X, 1,.., 1,..), @) = | det x |°- Y f ™ (Etx,)dt .
eV -0} J o

D’autre part on a

+ o +
f tns—l . (Poo@txoo)dt — J tns—l . e—nt2F(§xoo)dt )

0 0

Faisons le changement de variables
u = nt’ F(€x,);

Iintegrale ci-dessus devient

1 r ns _% F ns
— S . . 2

et puisque
F(tio1+..+1,0,) = (t;, .., t,)A ‘A -],
tn
on a
(¥) E(@, (Xy, 1, .y 1, ..), ®)
1 ns\ _ns — ns
=§F ? T 2-|detxoo|s- Z (quOA-rArx_ootq)_T'
qeZ" — {0}

Dans le cas qui nous intéresse, les matrices x_ ont pour valeurs
Xo = P;!x, xeZR)T(Z)\TR).
On rappelle que I'on a un isomorphisme
T (EQR)* — T(R)
y = m(y).

_ De plus, on vérifie facilement que I'on a le
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LEMME. Soit y un élément de (EQR)™;
n(y) = AD(y)A™',

ou D(y) est la matrice diagonale (y'V, ..., y™).

Soit v I'isomorphisme défini au chapitre II, en prenant pour v la place
infinie, on voit que v applique T(R) sur (R™)* x (C*) et que

vem(y) = ('Y, .,y ).
Pour y = (yV, .., y"1*2)) un élément de (R*)" x (C*)? on note
s dy —rteody,
= il]l[yil o 7_ =1 |yl
avec
e; =1 pour 1<i<r
et

e, =2 pour r,+1<i<<r +r,.

Définition 2. Soit P une matrice d’ordre n réelle, symétrique, définie
positive; on définit la série d’Epstein Z(P, s) ou s est un nombre complexe

) n
vérifiant Re s > 5:

1
Z(P,s) =5 » (qP'9*.

qeZ" —{0}

Avec cette définition et en utilisant la relation (), intégrale I se réécrit
présent

2/)y

.....

h — d
J=Y J (Ny)S-Z(P;lAD(y) D(y) ‘A ‘P,flﬁ)—y
J=1 J y=01,s¥p, 44,)62

et @ est un domaine fondamental dans (R*)" x (C*)? correspondant p: -

I'isomorphisme v a un domaine fondamental de Z(R)T(Z)\ T(R).
Posons comme nouvelles variables

‘ 2. i I 2

Tl = lyl ";Tr1+r2 = |'yr1+r2
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et pour toute matrice P de G(R), écrivons

O — (det P)""- P,

il vient

J = 2r1—1(4n)r1 . 2—(r1 +ra2) , | dE | -s/2, K ;
avec

h o ryt+r2 d:c

K=Y Jz ((Pj?)—lAOD(r) FA° ‘(Pf.’)‘1 — ) 11 —,
ji=1 i=1 T

ou lintégrale porte sur les T = (ty, .., T, +,,) € U/H €t ou dp = det(A)?
désigne le discriminant de E, D(t) la matrice diagonale

(Tys oo Trgt 15 oo Trpbrgs Trpt 1o oo Teybra) s

H le sous-espace de (R })* 7" défini par I’équation

rit+ra

[ = =

i=1
et U 'image dans H des unités du corps de nombres E.

On fait encore le changement de variables suivant:
R 5 R, xR’
(Tis oo Trytry) 2 (U Xq 5 oy X,)

our=ry +r, — let
r .
=u-[]1eP|* pour 1<j<r, +r,,
i=1

ou (gy, ..., &) est un systéme d’unités fondamentales de E.
Le Jacobien de ce changement de variables est

rit+r2
( I ri>u‘1-2”_1-nR,

i=1

ou R désigne le régulateur de E défini par

1
1 A g

+1
i 8(1’ )
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D’autre part, les unités de E ont pour image le réseau Z" dans R’ et?
les racines de I'unité contenues dans E ont pour image le vecteur nul. Si

X . w
on note w le nombre de ces racines alors le cardinal de U est 5

Finalement ’expression K devient

K = 2” . w_lnR Eh Z<PO —S dX
Jyx o 2 )
x€[0,1]

J=1

ou on a noté¢ P;, la matrice

P;, = P;'AD()'A(P; ).

X

Réécrivons a présent I'égalité du théoréme 1 avec les expressions qui
viennent d’étre calculées.

ProrosiTiON 12 (Formule de Hecke). Soit

AdS) = (27 wPldgl2) T (—;—) T Gl)

et pour une matrice P réelle, symétrique, définie positive, posons
AP, s) = n °I'(s) Z(P, s) .
Alors

we Ags) = 2'1—1-an A(Pj.{x,”—s>dx.
i=1J xe[0,11 2

Remarque. 1l serait intéressant de faire le calcul précédent dans un ca:
plus général ou l'on consideére un quasi-caractére ® de A" quelconque
Ainsi @ o Ngq correspond a un caractére de Hecke sur le groupe des idéau.
de E (cf. [4], chap. 8, §3, p. 156) et la difficulté est alors de calculer I'int¢
grale toroidale aux places finies sur lesquelles le quasi-caractére w o N,
se ramifie.
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