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Chapitre VI

La formule intégrale de Hecke

Le but de ce chapitre est d'utiliser la formule établie dans le théorème 1,

dans le cas particulier où k est le corps Q et E un corps de nombres

sur Q, afin d'obtenir la formule intégrale de Hecke classique (Réf. [H]).
Dans un premier paragraphe on construira une application de l'ensemble des

matrices G(Q)Z(A)\G(A) dans l'ensemble G(Z) • ZJ\G(R) des matrices réelles

et on calculera l'image par cette application du tore T(Q)Z(A)\T(A). Dans
le deuxième paragraphe, on utilisera cette application pour retrouver la
formule de Hecke à partir de l'identité du chapitre précédent (Théorème 1).

1. La projection de G(Q)Z(A)\G(A) sur la place à l'infini
A. La projection n, : G(Q)Z(A)\G(A) -> Z G(Q)\G(A)/G(2)

L'ensemble Zœ désigne le sous-groupe de G(A) constitué des matrices z
telles que zœ soit une matrice scalaire non nulle et zp est la matrice identité
pour tout nombre p premier.

Soient M e G(A) et z e (A) avec

Z

où pour pfini, on exige que zpe Zp pour presque tout p et zpeQp
pour tout p.

Soit S l'ensemble des nombres premiers p tels que zp<£ Zp et soit p
un élément de S, il existe un entier np vérifiant

pnp'zpez;
Soit Q la matrice scalaire de Z(Q) dont les éléments diagonaux valent

fi P"p; ZQ est une matrice de Z^ • G(Z).
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Soit (ZQ)f la matrice adélique coïncidant avec ZQ aux places finies

et égale à 1 à la place infinie, et (ZQ)œ la matrice adélique égale à

Z^Q à la place infinie et égale à 1 aux places finies; on a la décomposition
suivante :

ZM - ZQ-Q-'M
(ZQ)o0-(ZQ)f

(ZQ)xQ-'M(

Ce qui précède montre que la projection qui a un élément de

G(Q)Z(A)\G(A) fait correspondre la classe dans Z00G(Q)\G(A)/G(Z) d'un

représentant quelconque de cet élément, est bien définie.

B. Il y a une bijection n2 entre G(Q)\G(A)/G(Z) et G(Z)\G(R)

En effet, on considère l'application de G(R) dans G(Q)\G(A)/G(Z) qui a

une matrice g de G(R) associe la classe de (g, 1,..., 1,...) dans G(Q)\G(A)

/G(Z). Cette application est surjective puisqu'on a la décomposition bien

connue de G(A) :

G(A) G(Q).G+(R).G(Z)

(voir par exemple [5], pp. 143-146 pour le cas n 2 et la démonstration

est la même pour n quelconque).

Supposons que les matrices g et g' aient la même image. Alors on a

une égalité

ygk Y g' k',

avec y, y' g G(Q) et k, k' e G(Z) ; par suite

Y"1 y' g kk'-1 g1'1g g''1 kk''1

Mais l'intersection G(Q) n G(R) • G(Z) est réduite à G(Z) ; cela entrai; s

l'existence d'un élément a de G(Z) tel que

Y ycr, g <sg', k ak'.

Ainsi g et g' ont la même image si et seulement si ces matrices so t

congrues modulo G(Z). On a démontré :

Proposition 10. L'application n2 ° n1 où

n, : G(Q)Z(A)\G(A) ZœG(Q)\G(A)/G(Z)
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et

ti2: ZÛ0G(Q)\G(A)/G(Z) - Z(R)G(Z)\G(R)

sont définies comme précédemment, n'est autre que la projection canonique de

G(Q)Z(A)\G(A) sur Z(R)G(Z)\G(R).

C. L'image du tore T(A) dans Z(R)G(Z)\G(R)

L'image de T(Q)Z(A)\T(A) dans Z^GCQAGfAJ/G^) est

Z„T(Q)\T(A)/T(Z).

Dans le cas particulier où l'on considère un corps de nombres E sur Q,

muni d'une base fondamentale (oeq,coj, on déduit de la proposition 3

du chapitre II et de la remarque qui suit qu'il y a un isomorphisme v
de T(Q)\T(A)/T(Z), sur £x\A^/(]71 où r^ désigne le sous-anneau

compact maximal de E^. Ainsi ZœT(Q)\T(A)/T(Z) s'identifie à l'ensemble
Rx • LX\A£/(]"] r^) qui se projette dans le groupe des classes d'idéaux
de E

E^E*\AÏ/(ftr;),
où on a noté Eœ le produit des complétés aux places infinies Yl ^v

veP
•

00

Soient h le nombre de classes de E et i^j)j=läh, un système de représentants
de ces classes dans A£x on a une bijection

R*.£*\A*/(nr;)^ y
j l à h

En combinant cette bijection avec l'isomorphisme

ZcoT(Q)\ T(A)/T(Z) ^ R* • £x\A£7(n rp
on peut écrire

ZœT(Q)\T(A)/T(Z) y Hj-(ZXT(Z)\TJA)),
j — làh

où la réunion est disjointe et où la classe de la matrice Hj e T(A) dans
T, {\) T(Q)\T(A)/T(Z) correspond à la classe de l'élément a,, de AE

dans E* r*).Onchoisit de plus Hj telle que

(Hj)œ1

On cherche à présent l'image du quotient Zœ T(Q)\ dans
Z(R)G(Z)\G(R). Si on note h] l'image de la matrice Hj dans Z(R)G(Z)\G(R)
alo.-s l'image de ZœT(Q)\T(A)/T(Z) est [j
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Reste à déterminer un système de matrices hj. Pour chaque élément
de A £ dans le système de représentants des classes d'idèles, on note

aj Laia„j] un idéal de E dont la classe correspond par IE (voir la

proposition du chapitre II) à la classe aj.

Définition 1. On note Pj l'élément de G(Q), matrice de passage de la base

fondamentale (<%,co„) de E à la base [au,0Lnj\ de l'idéal aj9 dont la

E ligne est constituée des coordonnées du vecteur oc,-7- dans la base

(©!,-, COj.

D'autre part, on a le diagramme d'isomorphismes commutatif suivant
déduit de la proposition 4 du chapitre II

E*x\Al/(Y\r; ^ TX(A)\T(A)/T(Z)<= GJA)\G(A)/G(Z)

Ie 1 ' It 11 It ï 1

Idéaux de E ^ Q.'1 (Idéaux de E) <= Réseaux de Q"

Le réseau image par IT de la matrice (1, Pj,..., Pj9...) de G(A) est le réseau

associé à l'idéal aj par l'application D"1. En effet, quelque soit la place v

finie, les vecteurs qui engendrent le réseau (r"*Pj) ont pour coordonnées

dans la base canonique les coordonnées de o^j*..., anj dans la ba^e

(coi,..., coJ.

On en déduit que

Hj (1, n (Hj)p) (1, Pj,Pj,...) mod G(Z)
P

et par suite la matrice h-} est l'image de (1, Pj,..., Pj,...) dans Z00G(Z)\G(R),
c'est-à-dire Pj1. Par suite:

Proposition 11. L'image du tore Z00T(Q)\7n(A)/T(Z) dans

Z(R)G(Z)\G(R)

h

est la réunion (J Pj1 • (Z(R)T(Z)\T(R)).
j= i
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2. La formule intégrale de Hecke

On suppose toujours que E un corps de nombres sur Q. En choisissant

pour g la matrice identité, la formule adélique donnée dans le théorème 1

du chapitre précédent devient

£((p, x, co) dpZXT{x) Ç(cp, co°Ne/q)
r(Q)Z(A)\T(A)

On définit le quasi-caractère co de Ax/Qx de la manière suivante:

co(t) | t |sa, te Ax

avec s g C et g Res > 1.

Ainsi

® ° Ne/q(0 I 1, te AE

On définit la fonction cp de Sf(V(A)) par

<p T

avec, pour les places finies,

<Pp(tP) XLp(tp)> tpeE®Qp,
°ù 1lp est la fonction caractéristique du réseau Lp engendré dans E ® Qp

par la base fondamentale (co1,..., coj de E sur Q.

On note pp comme au chapitre II, l'isomorphisme de E <g> Qp sur

EU; le réseau Lp étant engendré par une base fondamentale, on a
Mp

de sorte que

mu) n ^.
M p

«pp^p-1 n Vf,
Mp

Pour la place infinie, on pose

«PooCO e~nm,

avec la fonction F définie par

F(t) L tf/W2 + 2 £ | CT,(t) |2
i— 1 i r i + l

°ù (CTi)i</<ri désignent les r1 plongements de E dans R, (oL r\ + 1 ^ i + r2
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les r2 plongements de E dans C non conjugués deux à deux et

an+r2 + i CTri + i P°ur 1 < 1 ^ r2 •

La fonction F peut également s'exprimer pour un élément t tl(ù1 +
+ tnco„ de E (g) R de la manière suivante :

F(t1(û1+... + t„a)„) X (i1co(/, + + t„(ö<i))2

ri•r;.
'1

+ 2 £ | fitof + + („©</> |2 (tx,..., t„)A • 'A [ i

\ î,

où on a noté co^ cr^co,) et A la matrice

co^ ••• ©<">

>(1) co(n)' n n

Enfin, on note comme au chapitre V :

\iE la mesure de Haar sur AE obtenue en prenant \xE avec

dx
— 1 Pour toute place finie / de E, d[i^(x) -—- pour les places

I x I

réelles de E et d[i^(x) \ x \
~ 2

• | dx A dx | pour les places complexes de E,

|iT la mesure de Haar sur T(A) et T(Q)\T(A),

p la mesure de Haar sur Ax, QX\AX et Z(Q)\Z(A),

\iZXT la mesure de Haar sur T(Q)Z(A)\T(A).

A) Calcul de Ç(cp, (d°NE/Q)

Pour a > 1, on a les égalités suivantes:

Ç(cp, cùoNElQJ <p(t) 11 iâe d]\E(t) n x
<P^ I | • | tflIs

(cf. [6], Prop. 10, p. 119).

Alors en utilisant [6], Prop. 11, p. 120 et lemme 8, p. 127, on obtien

Ç(<p,coo NEIQ)1T"S/2 n (1-M5)"1'
/ fi fini

où je x désigne une uniformisante de Notons
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GJs) n-^'2r0r'-(2irr(1"s)-r(s)";

alors

Ç(CP? CÛ°N£/q) ^oo(S) ' CE(5) >

où Ç.g désigne la fonction zeta de Dedekind de l'extension £.

B) Calcul de Vintégrale toroïdale

Dans la suite, on notera I l'intégrale toroïdale :

I £(cp, x, co)d\xZ\T{x).
T(Q)Z(A)\T(A)

On a vu que l'image par 71! du quotient (T(Q)Z(A)\T(A)) est

Z00T(Q)\T(A)/T(Z)

Mais ce groupe est isomorphe au quotient suivant :

(T(Q)Z(A)\T(A))/(T(Z)/Z(Z))

Lemme. Soit é, un élément de G(Z); alors

E(cp, xÇ, co) £(cp, x, co).

Démonstration. On a

£(cp, x, co) — X Y*»
yeP(Q)\G(Q)

et

M(cp, x, co) | det x I a • | <P(et x) • 11 |a Mt).

Il suffit de montrer

M(cp, x, co) M(cp, x£, co).

Mais e G(Z) donc | det E, |A 1 ; de plus en chaque place finie p,

^peG(Zp) donc etpxpeLp si et seulement si etpxp^p e Lp, ce qui prouve le

lemme.

Le groupe T(Z)/Z(Z) étant compact, on choisit une mesure de Haar
sur celui-ci de manière à ce qu'il soit de mesure 1. Si on prend sur le
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groupe ZO0T(Q)\T(A)/T(Z) la mesure quotient notée Az\r> on obtient comme
nouvelle expression de l'intégrale /

/
Z00r(Q)\T(A)/T(Z)

£(cp, x, co) d|iZ\rM *

puisque la série E est invariante par l'action de T(Z).
On a vu que le quotient ZœT(Q)\T(A)/T(Z) s'écrit comme une réunion

disjointe

U Hj(Z(R)T(Z)\T(R)).
j= i

Notons pToo la mesure induite par pzyT sur le quotient Z(R)T(Z)\T(R);
alors

I £ £((p, o))d|iTJ.x).
Z(R)T(Z)\T(R) 7=1

Pour chaque indice j de 1 à h, les matrices Hj et (hj, 1,1,...)
(P/1, 1,..., 1,...) sont dans une même classe de G(Q)\G(A)/G(Z). (Cf. la

remarque au-dessus de la proposition 11).

Comme les séries E sont invariantes par l'action de G(Q) à gauche et de

G(Z) à droite, on obtient

/ - £ £(9, hj.x, <f>)d\iTJx).
Z(R)T(Z)\r(R) j= 1

On calcule à présent les séries P(cp, x, co) dans le cas particulier où

x (xœ, 1,1). Alors

£(9i(*oo »
1> 1' ••)> ®) | det |

I det I5

UIA" £ <P

Q*\A* ÇeK(Q)-{0>

SeV(Q)-{0) Ri-nz;
I t Ia * 9 &

I det x„ I xÇeK(Q)-{0} \J

dt
f'yjtyxj—• n

0 t P
9J&WJit)

Soit h, un élément de K(Q) — {0}, de coordonnées c,„); alors l'intégrai'

9p(£,t)d|af,(t) est non nulle lorsque

Max(|^|p,...,|yp) < 1.
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Pour que le produit sur l'ensemble des nombres premiers des intégrales
précédentes soit non nul, il faut donc choisir é, de coordonnées (^)iàn
vérifiant :

6 n (QnZp) ;

P

donc ^ doit être un élément de Z. Par conséquent

£(cp, (xœ, 1,1,...), co) | det xœ |s • £
&V(k)-{0}

Voo&xjdt.

D'autre part on a

r + oo

r 2-cpjfyxjdt tns- 1 .e-nt2F^Xao)dt

Faisons le changement de variables

u nt2 • FfcxJ;
l'intégrale ci-dessus devient

1 fns

et puisque

-T - .7r"2-F(^J-2

F(t1a1 +... + t„(on)
h-

E(q>,(xœ, 1, -, l,..,)»<o)

on a

(*)

1 / ns \ ns

2r(y)7C"T'|detXoo|S' I («XX1A • 'Â'x
\ / ?eZ"-{0}

Dans le cas qui nous intéresse, les matrices xœ ont pour valeurs

xœ P]~lx, x e Z(R)T(Z)\T(R).
On rappelle que l'on a un isomorphisme

jr:(£0R)x -> R)

y tc(y).

D,: P'us, on vérifie facilement que l'on a le
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Lemme. Soit y un élément de (£(g)R)x;

7ü(y) AD(y)A~1

où D(y) est la matrice diagonale (y(1),y{n)).

Soit v l'isomorphisme défini au chapitre II, en prenant pour v la place

infinie, on voit que v applique T(R) sur (R + )ri x (Cx)r2 et que

v o 7r(y) (y{1),y{ri+r2)).

Pour y — (y(1),..., y(ri+r2)) un élément de (Rx)ri x (Cx)r2, on note

riT±rr2 dy riT±rr2 dyx
NyFI I yiIeiet — n

avec

et

1 1 I J i I 111 ie; '
;=i y f i kr,-

ex 1 pour 1 ^ i ^ r1

ex 2 pour + 1 i ^ r1 + r2

Définition 2. Soit P une matrice d'ordre n réelle, symétrique, définie

positive ; on définit la série d'Epstein Z(P, s) où s est un nombre complexe

n
vérifiant Re s > — :

2

Z(P, S)
'• I (qP'qy.

z- qeZ"-{0}

Avec cette définition et en utilisant la relation (*), l'intégrale / se réécrit i
présent I-r | • 7l"T •

où J est définie par

h

J= I7=1 J
• Z Pj'AD(y)'A

y (yi,...,yri+r2)e@ \ ^ J -V

et ^ est un domaine fondamental dans (Rx)ri x (Cx)r2 correspondant p«'
*

l'isomorphisme v à un domaine fondamental de Z(R)T(Z)\T(R).
Posons comme nouvelles variables

Ti| ^! (2;... ; Tri+r2 |.j>ri+rJ2
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et pour toute matrice P de G(R), écrivons

P° (det P)~1/n - P l

il vient

J2ri ~ 1(47i)ri • 2_(ri +r2)

avec

K= Ij= 1

z (P°r WD(t) 'A°<(P°) - s n 71 >

V2 dX:

où l'intégraie porte sur les x (xl5..., xri+r2)eU/H et où det(À)2

désigne le discriminant de E, D(x) la matrice diagonale

(xixri+^xri + r2, xri _|_ ^xrt + r2),

H le sous-espace de (R *)ri+r2 défini par l'équation

ri +r2

n 1

i 1

et U l'image dans H des unités du corps de nombres E.

On fait encore le changement de variables suivant :

Rri+r2 R+ x Rr

(il,..., Tri+rj) )->(«, Xr)

où r r1 + r2 — 1 et

r

ij w • n 1 eF) 12xi' p°ur 1 ^ j < ri + o

où (ex,£r est un système d'unités fondamentales de E.

Le Jacobien de ce changement de variables est

Y[ L u
1

• 2ri 1
• n R

i 1

où R désigne le régulateur de E défini par

Ibfe,

R - - 2r2
n

cdi81 ,(i)

p (r + 1)
8 1 cri}
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D'autre part, les unités de E ont pour image le réseau Zr dans Rr et

les racines de l'unité contenues dans E ont pour image le vecteur nul. Si

w
on note w le nombre de ces racines alors le cardinal de U est —.

2

Finalement l'expression K devient

K T'-w-'nRtfz(p°x,^W
j= 1 J xe[0,l]r \ ^ /

où on a noté Pj x la matrice

Pj,x /^ADM'A'OPr1).
Réécrivons à présent l'égalité du théorème 1 avec les expressions qui
viennent d'être calculées.

Proposition 12 (Formule de Hecke). Soit

ae(s)K"l2\dE\Vsr fty* rw> Us)

et pour une matrice P réelle, symétrique, définie positive, posons

A(P, 5) n~T(s) Z{P, s)

Alors

h

w • AÊ(s) 2ri 1
• £

j i

ns
A( PjX

xe[0,l]r

Remarque. Il serait intéressant de faire le calcul précédent dans un ca

plus général où l'on considère un quasi-caractère co de Ax quelconque
Ainsi co o NE/Q correspond à un caractère de Hecke sur le groupe des idéau

de E (cf. [4], chap. 8, §3, p. 156) et la difficulté est alors de calculer l'inté

grale toroïdale aux places finies sur lesquelles le quasi-caractère co ° NEi

se ramifie.
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