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SÉRIES D'EISENSTEIN 121

Chapitre V

Calcul des intégrales toroïdales des séries d'Eisenstein

On désigne toujours par k un corps global, par Ak les adèles de k,

par E une extension algébrique de k de dimension n et l'espace vectoriel

£vect sous-jacent à E est noté V(k).

On rappelle que l'on a le diagramme d'isomorphismes commutatif suivant :

Soit pE la mesure de Haar sur le groupe des idèles de A£; on note

\iT la mesure de Haar du groupe multiplicatif T(Ak) transportée par l'iso-

morphisme v-1, ainsi que la mesure induite sur le quotient T(k)\T(Ak).
On note de plus p la mesure de Haar sur chacun des quotients kx\Ak
et Z(k)\Z(Ak).

Il existe une unique mesure de Haar notée d\iZ\T sur le quotient
T(k)Z(Ak)\T(Ak) telle que pour toute fonction / e J>f(T(k)\T(Ak)\ on ait

f(xQdmdyiZVrW
Z(k)\Z(Ak)

f(x)dpT(x).
T(k)\T(AU)T(k)Z(Ak)\T(Ak)

On calcule à présent l'intégrale des séries d'Eisenstein sur le tore
T(k)Z{Ak)\T(Ak). Soit g dans G(Ak), cp dans Sf(V(Aj) et co un quasi-
caractère de Afcx ; on a les égalités suivantes:
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£(cp, tg, co) dpZKT(t)
T(k)Z(Ak)\T(Ak)

co(det z tg) E tg) d\i(z)d\iZ\T{t)
T(k)Z(Ak)\T(Ak) J fcx\Afc* >eV(k)~ {0}

co(det E
T(k)\T(Ak) Z,eV(k)~{0}

En observant que si t est un élément de T(Afc), on a l'égalité

det tW£\fc(v(t)) ;

l'intégrale précédente devient

co(det g)
E*\Ae &E*

E V&9) • ®(N

co(det 3) <P(t0) • <4NE\k(t))

Pour cp une fonction de £f(V(Ak)) et co un quasi-caractère de A on pose

Ç(<P, ®) cp(£)co(t) d\iE(t)

et

on a démontré :

%(t) <rt!9) P°ur 9 e G(A*) ;

Théorème 1. Soit k un corps global, E une extension algébrique finh
de k de dimension n, g une matrice de G(Ak), (p une fonction à

Sf(V(Ak)), co un quasi-caractère de Ak ; on a l'identité suivante:

£(<p, tg, co) d\iZXT(t) co(det g) • Ç(<p^ co o NEXk).
T(k)Z(Ak)\T(Ak)

Remarque. L'intégrale

E(cp, tg, co) dpZ\T(t)
T(k)Z(Ak)\T(Ak)

est appelée une intégrale toroïdale de séries d'Eisenstein.
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