Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 31 (1985)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SÉRIES D'EISENSTEIN, INTÉGRALES TOROÏDALES ET UNE

FORMULE DE HECKE

Autor: Wielonsky, Franck

Kapitel: 2. Le prolongement analytique et l'équation fonctionnelle des séries

d'Eisenstein.

DOI: https://doi.org/10.5169/seals-54560

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. Le prolongement analytique et l'équation fonctionnelle des séries d'Eisenstein.

Définissons une relation d'équivalence sur les quasi-caractères de \mathbf{A}_k^{\times} : on dira que deux quasi-caractères sont équivalents s'ils coıncident sur les idèles \mathbf{A}_k^1 de module un. Sachant qu'un quasi-caractère trivial sur \mathbf{A}_k^1 est de la forme $|a|^s$, $s \in \mathbb{C}$, une classe d'équivalence est constituée de tous les quasi-caractères de la forme $\omega(a) = \omega_0(a) \cdot |a|^s$, où ω_0 est un caractère de \mathbf{A}_k^{\times} , représentant fixé de la classe et s un nombre complexe déterminé de manière unique par ω . On a donc paramétrisé une classe d'équivalence de quasi-caractères par une variable complexe s et on peut identifier cette classe avec un plan si s est de caractéristique nulle et avec un cylindre si s est de caractéristique s.

Choisissons une mesure de Haar sur \mathbf{A}_k^{\times} ; sur le groupe compact $k^{\times} \backslash \mathbf{A}_k^1$, on choisit la mesure de Haar μ_1 telle que $\mu_1(k^{\times} \backslash \mathbf{A}_k^1) = 1$.

Soit N le groupe tel que l'on ait la décomposition

$$k^{\times} \backslash \mathbf{A}_{k}^{\times} = k^{\times} \backslash \mathbf{A}_{k}^{1} \times N;$$

on définit une mesure μ_2 sur N par

$$d\mu_2(n) = \frac{dn}{n}$$
 si $N = \mathbf{R}_+^{\times}$,

et $\mu_2(\{1\}) = 1$ si N est isomorphe à \mathbb{Z} .

Sur le groupe $k^{\times}\backslash \mathbf{A}_{k}^{\times}$, on considère la mesure produit $\mu = \mu_{1} \times \mu_{2}$. Enfin, sur \mathbf{A}_{k}^{\times} , on choisit la mesure μ dont l'image dans le quotient $k^{\times}\backslash \mathbf{A}_{k}^{\times}$ est la mesure définie précédemment. On sait d'après le chapitre précédent que la série $E(\varphi, x, \omega)$ est holomorphe sur l'ensemble des quasicaractères ω de la forme $\omega_{0}(a) \cdot |a|^{s}$ avec $\mathrm{Re}\, s > 1$. Le prolongement analytique et l'équation fonctionnelle des séries d'Eisenstein sont donnés par la

PROPOSITION 9. On peut prolonger analytiquement les séries $E(\varphi, x, \omega)$ à l'ensemble de tous les quasi-caractères. Soit $X_n(\mathbf{A}_k^1)$ le groupe des quasi-caractères d'ordre n de \mathbf{A}_k^1 ; la fonction prolongée est une fonction méromorphe dans \mathbf{C} et holomorphe sauf si $\omega \in x_n(\mathbf{A}_k^1)$ où si $\omega(a) = \omega_0(a) \cdot |a|$ avec $\omega_0 \in x_n(\mathbf{A}_k^1)$; elle admet respectivement en ces points un pôle simple de résidu $\frac{1}{n} \rho \varphi(0) \omega(\det x)$ et un pôle simple de résidu

$$-\frac{1}{n}\rho\widehat{\varphi}(0)\widehat{\omega}^{-1}(\det x)$$
 avec

$$\begin{split} \rho &= 1 & \text{si } k \text{ de caract\'eristique } 0 \,, \\ \rho &= (\log \mathit{Q})^{-1} & \text{si } N &= \{\mathit{Q}^{\nu}\}_{\nu \in \mathbf{Z}} \,. \end{split}$$

Enfin la fonction prolongée vérifie l'équation

$$E(\varphi, x, \omega) = E(\widehat{\varphi}, \check{x}^{-1}, \widehat{\omega}),$$

où $\hat{\omega}$ est le quasi-caractère de \mathbf{A}_{k}^{\times} défini par

$$\hat{\omega}(t) = |t| \cdot \omega^{-1}(t).$$

Démonstration. On décompose la série $E(\varphi, x, \omega)$. Les idèles de module un $k^{\times} \backslash \mathbf{A}_{k}^{1}$ étant de mesure non nulle, on ne peut pas écrire $E(\varphi, x, \omega)$ comme la somme d'une intégrale sur les idèles $|t| \leq 1$ et d'une intégrale sur les idèles $|t| \geq 1$. Il faut donc choisir sur \mathbf{R}_{+}^{\times} , deux fonctions continues F_{0} et F_{1} avec les propriétés suivantes:

- $\text{(i) } F_0 \geqslant 0 \,, \quad F_1 \geqslant 0 \,, \quad F_0 \,+\, F_1 \,=\, 1 \;.$
- (ii) Il existe un intervalle compact $[t_0, t_1]$ dans \mathbf{R}_+^{\times} tel que

$$F_0(t) = 0$$
 pour $0 < t < t_0$,
 $F_1(t) = 0$ pour $t > t_1$.

On demande de plus que

$$F_0(t) = F_1(t^{-1})$$
 pour tout t;

pour cela, on choisit pour F_1 une fonction continue définie sur $t \ge 1$ avec

$$F_1(1) = \frac{1}{2}$$
 et $F_1(t) = 0$ pour $t \ge t_1 > 1$.

Enfin, on pose

$$F_1(t) = 1 - F_1(t^{-1})$$
 pour $0 < t < 1$
 $F_0 = 1 - F_1$.

et

Alors la série $E(\varphi, x, \omega)$ peut s'écrire comme une somme $E = E_0 + E_1$ avec

$$E_0(\varphi, x, \omega) = \int_{k \times \backslash \mathbf{A}_k^{\times}} \omega(\det tx) \, \theta(\varphi, x, t) \, F_0(|t|_{\mathbf{A}_k}) d\mu(t)$$

et

$$E_1(\varphi, x, \omega) = \int_{k \times \backslash \mathbf{A}_k^{\times}} \omega(\det x) \, \theta(\varphi, x, t) \, F_1(|t|_{\mathbf{A}_k}) d\mu(t) \, .$$

L'intégrale $E_0(\varphi, x, \omega)$ est une fonction entière définie sur l'ensemble de tous les quasi-caractères.

Choisissons B > 1. Pour $\sigma \in \mathbb{R}$, $\sigma \leq B$, $t \in \mathbb{R}_+^{\times}$, on a

$$t^{n\sigma}F_0(t) \leqslant t_0^{n(\sigma-B)} \cdot t^{nB}.$$

Ceci donne la majoration suivante:

$$\begin{split} & \int_{k^{\times}\backslash\mathbf{A}_{k}^{\times}} |\det tx\mid_{\mathbf{A}^{k}}^{\sigma_{k}}\cdot|\; \theta(\phi,\,x,\,t)\mid\cdot\,F_{0}(|t|_{\mathbf{A}_{k}})\; d\mu(t) \\ & \leqslant t_{0}^{n(\sigma-B)}\cdot\int_{k^{\times}\backslash\mathbf{A}_{k}^{\times}} |\det x\mid_{\sigma}\cdot|\; t\mid_{\mathbf{A}_{k}}^{nB}\cdot|\; \theta(\phi,\,x,\,t)\mid d\mu(t)\;, \end{split}$$

intégrale qui converge d'après le lemme de la proposition 6 du chapitre III. Ainsi, on obtient la convergence uniforme de $E_0(\varphi, x, \omega)$ sur tout compact de C et l'application $\omega \to E_0(\varphi, x, \omega)$ est holomorphe.

On exprime à présent l'intégrale E_1 en fonction de l'intégrale E_0 en utilisant la formule de Poisson. Pour cela, on fait le changement de variables $t \mapsto t^{-1}$. Ce changement transforme la mesure de Haar μ en une mesure de Haar $c\mu$, où $c^2 = 1$ puisque c'est un homéomorphisme d'ordre 2 de $k^{\times} \setminus \mathbf{A}_k^{\times}$, donc c = 1 et on obtient

$$\begin{split} E_1(\varphi, x, \omega) &= \int_{k^{\times} \backslash \mathbf{A}_k^{\times}} \omega(\det t^{-1} x) \cdot \theta(\varphi, x, t^{-1}) F_0(|t|_{\mathbf{A}_k}) d\mu(t) \\ &= E'_0(\varphi, x, \omega) + R_1(\varphi, x, \omega) - R_2(\varphi, x, \omega) \,, \end{split}$$

avec

$$\begin{split} E_0'(\phi,x,\omega) &= \int_{k^\times \backslash \mathbf{A}_k^\times} \omega(\det t^{-1}x) \cdot |\det t^{-1}x|_{\mathbf{A}_k}^{-1} \theta(\widehat{\phi},\check{x}^{-1},t) F_0(|t|_{\mathbf{A}_k}) d\mu(t), \\ R_1(\phi,x,\omega) &= \widehat{\phi}(0) \cdot \int_{k^\times \backslash \mathbf{A}_k^\times} \omega(\det t^{-1}x) \cdot |\det t^{-1}x|_{\mathbf{A}_k}^{-1} \cdot F_0(|t|_{\mathbf{A}_k}) d\mu(t), \\ R_2(\phi,x,\omega) &= \phi(0) \cdot \int_{k^\times \backslash \mathbf{A}_k^\times} \omega(\det t^{-1}x) F_0(|t|_{\mathbf{A}_k}) d\mu(t). \end{split}$$

Soit T la matrice de $G(\mathbf{A}_k)$ telle qu'on ait l'égalité

$$(a, b) = (aT|b),$$

où (a|b) désigne le produit scalaire euclidien $a \cdot b$ sur $V(\mathbf{A}_k)$; les matrices x et x sont reliées par la relation

$${}^tT^t x {}^tT^{-1} = \check{x},$$

de sorte que les déterminants de x et x sont égaux et

$$E'_{0}(\varphi, x, \omega)$$

$$= \int_{k^{\times}\backslash \mathbf{A}_{k}^{\times}} \omega^{-1}(\det t\check{x}^{-1}) \cdot |\det t\check{x}^{-1}|_{\mathbf{A}_{k}} \cdot \theta(\widehat{\varphi}, \check{x}^{-1}, t) F_{0}(|t|_{\mathbf{A}_{k}}) d\mu(t)$$

Soit $\hat{\omega}$ le quasi-caractère de \mathbf{A}_k^{\times} défini par

$$\hat{\omega}(t) = |t| \cdot \omega^{-1}(t);$$

$$E'_{0}(\varphi, x, \omega) = E_{0}(\hat{\varphi}, \check{x}^{-1}, \hat{\omega}).$$

alors

D'autre part, si le quasi-caractère \omega s'écrit

$$\omega(t) = \omega_0(t) \cdot |t|^s,$$

où ω_0 est un caractère fixé, représentant de la classe de ω , les intégrales R_1 et R_2 se réécrivent

$$R_{1}(\varphi, x, \omega) = \widehat{\varphi}(0) \cdot \int_{k^{\times} \backslash \mathbf{A}_{k}^{\times}} \widehat{\omega}(\det tx^{-1}) F_{0}(|t|_{\mathbf{A}_{k}}) d\mu(t)$$

$$= \widehat{\varphi}(0) \widehat{\omega}^{-1}(\det x) \int_{k^{\times} \backslash \mathbf{A}_{k}^{1}} \omega_{0}^{-1}(t^{n}) d\mu_{1}(t) \cdot \int_{N} |t|_{\mathbf{A}_{k}}^{n(1-s)} \cdot F_{0}(|t|_{\mathbf{A}_{k}}) d\mu_{2}(|t|)$$

et

$$\begin{split} R_2(\varphi,\,x,\,\omega) \\ = & \varphi(0)\; \omega(\det\,x) \int_{k^\times\backslash \mathbf{A}_k^1} \omega_0^{\,-1}(t^n) d\mu_1(t) \cdot \int_N |\,t\,|_{\mathbf{A}_k}^{\,-ns} \cdot F_0(|t|_{\mathbf{A}_k}) d\mu_2(|t|) \;. \end{split}$$

L'intégrale $\int_{k^{\times}\backslash \mathbf{A}_{k}^{1}} \omega_{0}^{-n}(t) d\mu(t)$ vaut 1 ou 0 suivant que ω_{0}^{n} est trivial ou non sur \mathbf{A}_{k}^{1} . Notons $\delta(\omega_{0}, n)$ ce facteur, alors

$$R_{1}(\varphi, x, \omega) = \hat{\varphi}(0) \cdot \hat{\omega}^{-1}(\det x) \delta(\omega_{0}, n) \cdot \int_{N} |t|_{\mathbf{A}_{k}}^{n(1-s)} \cdot F_{0}(|t|_{\mathbf{A}_{k}}) d\mu_{2}(|t|)$$

et

$$R_2(\varphi, x, \omega) = \varphi(0) \omega(\det x) \delta(\omega_0, n) \int_N |t|_{\mathbf{A}_k}^{-ns} \cdot F_0(|t|_{\mathbf{A}_k}) d\mu_2(|t|).$$

Si on note

$$\lambda(s) = \int_{N} |t|^{s} F_{0}(|t|_{\mathbf{A}_{k}}) d\mu_{2}(t) ,$$

on obtient

$$R_1(\varphi, x, \omega) = \widehat{\varphi}(0) \widehat{\omega}^{-1}(\det x) \delta(\omega_0, n) \lambda(n(1-s))$$

et

$$R_2(\varphi, x, \omega) = \varphi(0) \omega(\det x) \delta(\omega_0, n) \lambda(-ns).$$

En utilisant [6] lemme 6, § 5, chap. VII, p. 121, il s'ensuit que $E(\varphi, x, \omega)$ est une fonction holomorphe sur l'ensemble de tous les quasi-caractères sauf en $\omega(a) = \omega_0(a)$ et $\omega(a) = \omega_0(a) \cdot |a|$ lorsque ω_0 parcourt l'ensemble $X_n(\mathbf{A}_k^1)$ des quasi-caractères d'ordre n sur \mathbf{A}_k^1 ; en ces points, la fonction $E(\varphi, x, \omega)$ admet respectivement un pôle simple de résidu $\frac{1}{n} \rho \varphi(0) \omega(\det x)$ et un pôle

simple de résidu $-\frac{1}{n} \rho \hat{\varphi}(0) \hat{\omega}^{-1}(\det x)$ avec

$$ho=1$$
 si k de caractéristique 0 et $ho=(\log Q)^{-1}$ si k de caractéristique p et $N=\{Q^{\mathsf{v}}\}_{\mathsf{v}\in\mathbf{Z}}$.

Enfin, en ce qui concerne l'équation fonctionnelle vérifiée par la série $E(\varphi, x, \omega)$, on a

$$E(\varphi, x, \omega) = E_0(\varphi, x, \omega) + E_1(\varphi, x, \omega)$$

$$= E_0(\varphi, x, \omega) + E_0(\widehat{\varphi}, \check{x}^{-1}, \widehat{\omega}) + \delta(\omega_0, n)[\widehat{\varphi}(0)\widehat{\omega}^{-1}(\det x)\lambda(n(1-s)) + \varphi(0)\omega(\det x)\lambda(ns)],$$

de sorte que

$$E(\hat{\varphi}, \check{x}^{-1}, \hat{\omega}) = E_0(\hat{\varphi}, \check{x}^{-1}, \hat{\omega}) + E_0(\varphi_-, x, \omega) + \delta(\omega_0, n) [\varphi(0)\omega(\det x)\lambda(ns) + \widehat{\varphi}(0)\hat{\omega}^{-1}(\det x)\lambda(n(1-s))],$$

où la fonction φ_- est définie pour $\xi \in V(\mathbf{A}_k)$ par

$$\varphi_{-}(\xi) = \varphi(-\xi).$$

Comme $E_0(\varphi_-, x, \omega) = E_0(\varphi, x, \omega)$, on obtient pour équation fonctionnell vérifiée par les séries d'Eisenstein

$$E(\varphi, x, \omega) = E(\hat{\varphi}, \check{x}^{-1}, \hat{\omega}).$$