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114 F. WIELONSKY

J a(det tx): Y o(&rx)du(r)
K*\Ap geV (k) — {0}

~ ¥ J a(det tx) e(et yx)dp(t)
YePUNG(R) ) A

= E(op, x, ®) .

Chapitre 1V

LE PROLONGEMENT ANALYTIQUE DES SERIES D’EISENSTEIN

Dans la suite, k désigne un corps global, E une extension de dimen-
sion n sur k et V(k) Pespace vectoriel sur k sous-jacent a E.

1. LA FORMULE DE POISSON

Soit y un caractere de A, non trivial, trivial sur k et soit (x, y) Ia
formule bilinéaire symétrique sur V(A,) non dégénérée définie par

(x, y) = Tr(xy),

ou Tr désigne la trace absolue Trg,; alors on peut identifier V(A,) ave:
son dual topologique par l'isomorphisme qui a un ¢lément x de V(A.
associe le caractere y(x, y) de V(A,).

Soit o la mesure de Tamagawa de A, pour laquelle le quotient E\A
est de mesure 1, avec I'identification précédente; la transformée de Fourie
d’une fonction @ de #(V(A,)) est définie par

oy) = j o(x) 1%, y) dafx),  pour  ye V(A,),
V(Ax)

et la formule de Poisson pour le sous-groupe discret a quotient compac
V(k) dans V(A,) s’écrit

Y ooex)= Y o) pour ¢eF(V(AY),

xeV (k) yeV (k)

I'orthogonal de V(k) s'identifiant a V(k).
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PROPOSITION 8. Soit @ une fonction de F(V(A,)); on pose

0o, x,0) = > o)

gV (k) — {0}
pour x € G(A;) et t € A} ; alors
0(, x, 1) + @(0) = | det tx | ,' (B(, X717 + @(0)),

ou X designe la matrice adjointe de la matrice x pour la forme bilinéaire
(a, b):

(ax,b) = (a,b,X), a,beV(A)).
Démonstration. On pose

V(G = oEtx)  pour £ e V(Ay);

alors V(n) = f O(Etx) x(&, n) doyE) .
V(Ax)

Si on fait le changement de variables £ — s = &t, on obtient

Yy = [t J @(sx) x(st™ 1, M) dofs) .

V(Ax)

' Posons encore z = sx; alors

Y(n) = | det tx | 5} f 0(z) x(zx~ 't ™1, m)do(z)

V(Ay)

= | det txlxk“j o(z) x(z, nt ™ X7 V)da(z)
V(Ax)
= |dettx |, oMt x Y).

Appliquons la formule de Poisson:; on obtient équivalence des égalités
suivantes :

> oWE) = Y (n),
EeV (k) neV (k)

@, x, 1) + @(0) = [ detex |5} Y Qe %Y,

nev(k)

09, x, 1) + @0) = |det tx |5} (6(¢, X1, t~ ")+ ¢(0)) .
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