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114 F. WIELONSKY

co(det tx) • ]T q>(tyx)d\x(t)
k*\A? &V(k)-{0}

Z
yeP(k)\G(k)

co(det tx) cp(et yx)d\i(t)
Ak

E{cp, x, co).

Chapitre IV

Le prolongement analytique des séries d'Eisenstein

Dans la suite, k désigne un corps global, E une extension de dimension

n sur k et V(k) l'espace vectoriel sur k sous-jacent à E.

1. La formule de Poisson

Soit x un caractère de Ak non trivial, trivial sur k et soit (x, y) la

formule bilinéaire symétrique sur V(Ak) non dégénérée définie par

(x, y)

où Tr désigne la trace absolue TrE/k; alors on peut identifier V(Ak) ave

son dual topologique par l'isomorphisme qui a un élément x de V{A-,

associe le caractère %(x, y) de V(Ak).

Soit a la mesure de Tamagawa de AE pour laquelle le quotient £\A
est de mesure 1, avec l'identification précédente; la transformée de Fourie
d'une fonction (p de y(V(Ak)) est définie par

<p(y) <p(x) x(x, y) da(x),pour y e V(Ak),
y (Ak)

et la formule de Poisson pour le sous-groupe discret à quotient compac
V(k) dans V(Ak) s'écrit

Z <PW Z (p(y) pour (pe£f(V(Ak)),
xeV(k) yeV(k)

l'orthogonal de V(k) s'identifiant à V(k).
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Propositions. Soit cp une fonction de £f(V(Ak)); on pose

0((p, x, t) Ya <Pféta)
^eV (k) — {0}

pour x e G(Ak) et te Ak ; alors

0(cp, x, t) + (p(0) I det tx IâJ (0(cp, 3c-1, t'1) + <p(0)),

où x désigne la matrice adjointe de la matrice x pour la forme bilinéaire
(a, b) :

(ax, b) (a, b, x), a, b e V(Ak).

Démonstration. On pose

- V&x) pour Ç g V(Ak);

<P&x) x(^, r|) da©
V(Ak)

alors \j/(rj)

Si on fait le changement de variables é, i— s ty, on obtient

$(Tl) I t lÂ"'

Posons encore z sx; alors

cp(sx) x(st \ r|) doc(s).
V(Ak)

\j/(p) | det tx 1 1
cp(z) x(zx \ r\)da.(z)

V{\k)

- I det tx t^1 • cp(z)x(z, Tit
1

J K(Ak)

i det tx jAl/ • cp(r|t !3c L).

Appliquons la formule de Poisson; on obtient l'équivalence des égalités
suivantes :

Z MÇ) Z >

t,sV(k) rieK(fc)

0(cp, X, t) + <p(0) I det tx IâZ - z <f>(Ttf ~ 'Je-'),
T\eV(k)

0(cp, x, t) + cp(0) | det tx | Ak* (0(cp, x"1, t-1) + cp(0)).
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