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co(det tx) • ]T q>(tyx)d\x(t)
k*\A? &V(k)-{0}

Z
yeP(k)\G(k)

co(det tx) cp(et yx)d\i(t)
Ak

E{cp, x, co).

Chapitre IV

Le prolongement analytique des séries d'Eisenstein

Dans la suite, k désigne un corps global, E une extension de dimension

n sur k et V(k) l'espace vectoriel sur k sous-jacent à E.

1. La formule de Poisson

Soit x un caractère de Ak non trivial, trivial sur k et soit (x, y) la

formule bilinéaire symétrique sur V(Ak) non dégénérée définie par

(x, y)

où Tr désigne la trace absolue TrE/k; alors on peut identifier V(Ak) ave

son dual topologique par l'isomorphisme qui a un élément x de V{A-,

associe le caractère %(x, y) de V(Ak).

Soit a la mesure de Tamagawa de AE pour laquelle le quotient £\A
est de mesure 1, avec l'identification précédente; la transformée de Fourie
d'une fonction (p de y(V(Ak)) est définie par

<p(y) <p(x) x(x, y) da(x),pour y e V(Ak),
y (Ak)

et la formule de Poisson pour le sous-groupe discret à quotient compac
V(k) dans V(Ak) s'écrit

Z <PW Z (p(y) pour (pe£f(V(Ak)),
xeV(k) yeV(k)

l'orthogonal de V(k) s'identifiant à V(k).
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Propositions. Soit cp une fonction de £f(V(Ak)); on pose

0((p, x, t) Ya <Pféta)
^eV (k) — {0}

pour x e G(Ak) et te Ak ; alors

0(cp, x, t) + (p(0) I det tx IâJ (0(cp, 3c-1, t'1) + <p(0)),

où x désigne la matrice adjointe de la matrice x pour la forme bilinéaire
(a, b) :

(ax, b) (a, b, x), a, b e V(Ak).

Démonstration. On pose

- V&x) pour Ç g V(Ak);

<P&x) x(^, r|) da©
V(Ak)

alors \j/(rj)

Si on fait le changement de variables é, i— s ty, on obtient

$(Tl) I t lÂ"'

Posons encore z sx; alors

cp(sx) x(st \ r|) doc(s).
V(Ak)

\j/(p) | det tx 1 1
cp(z) x(zx \ r\)da.(z)

V{\k)

- I det tx t^1 • cp(z)x(z, Tit
1

J K(Ak)

i det tx jAl/ • cp(r|t !3c L).

Appliquons la formule de Poisson; on obtient l'équivalence des égalités
suivantes :

Z MÇ) Z >

t,sV(k) rieK(fc)

0(cp, X, t) + <p(0) I det tx IâZ - z <f>(Ttf ~ 'Je-'),
T\eV(k)

0(cp, x, t) + cp(0) | det tx | Ak* (0(cp, x"1, t-1) + cp(0)).
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2. Le prolongement analytique et l'équation fonctionnelle
DES SÉRIES D'EISENSTEIN-

Définissons une relation d'équivalence sur les quasi-caractères de Akx :

on dira que deux quasi-caractères sont équivalents s'ils coïncident sur les idèles

Al de module un. Sachant qu'un quasi-caractère trivial sur Ak est de la

forme | a \s, se C, une classe d'équivalence est constituée de tous les quasi-
caractères de la forme co(a) co0(a) • | a |s, où co0 est un caractère de Akx,

représentant fixé de la classe et s un nombre complexe déterminé de manière

unique par co. On a donc paramétrisé une classe d'équivalence de quasi-
caractères par une variable complexe s et on peut identifier cette classe avec

un plan si k est de caractéristique nulle et avec un cylindre si k est de

caractéristique p.

Choisissons une mesure de Haar sur Akx ; sur le groupe compact
/cx\Ak, on choisit la mesure de Haar px telle que p1(/cx\Ak) 1.

Soit N le groupe tel que l'on ait la décomposition

/cx\Akx kx\Al x N;

on définit une mesure p2 sur N par

dn
dp2(n) — si N R +

n

et P2({1}) 1 si N est isomorphe à Z

Sur le groupe kx\Akx, on considère la mesure produit p m x p2

Enfin, sur Akx, on choisit la mesure p dont l'image dans le quotieni
/cx\Akx est la mesure définie précédemment. On sait d'après le chapitre

précédent que la série E(cp, x, co) est holomorphe sur l'ensemble des quasi
caractères co de la forme co0(a) • | a |s avec Re s > 1. Le prolongement analytique

et l'équation fonctionnelle des séries d'Eisenstein sont donnés par la

Proposition 9. On peut prolonger analytiquement les séries E(cp, x, co)

à Fensemble de tous les quasi-caractères. Soit Xn{Al) le groupe des quasi-

caractères d'ordre n de Al; la fonction prolongée est une fonction

méromorphe dans C et holomorphe sauf si coex„(Ak) où si co(a)

co0(a) • I a | avec co0 g x„(Ak); elle admet respectivement en ces points un

pôle simple de résidu - pcp(0)co(det x) et un pôle simple de résidu
n

— - pcp(0)co ~ x(det x) avec
n
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p 1 si k de caractéristique 0,

P (loger1 si iv {g*}veZ.

Enfin la fonction prolongée vérifie Féquation

£(cp, x, co) E(cp, 3c " \ ob),

où G) est le quasi-caractère de Ak défini par

&(t) I 11 • co_1(0

Démonstration. On décompose la série E(cp, x, co). Les idèles de module un
/cx\Afc étant de mesure non nulle, on ne peut pas écrire E(cp, x, co) comme
la somme d'une intégrale sur les idèles [ t | ^ 1 et d'une intégrale sur les

idèles | 11 > 1. Il faut donc choisir sur R+, deux fonctions continues F0
et F1 avec les propriétés suivantes :

(i) F0 ^ 0
# ^ 0, F0 E F1 \

(ii) Il existe un intervalle compact [t0, tfi\ dans R + tel que

FM 0 Pour 0 < t < r0,

F fit) 0 pour t > t1

On demande de plus que

F0{t) F fit'1) pour tout t ;

pour cela, on choisit pour Fx une fonction continue définie sur t ^ 1

avec

Fi(l) ^ et F fit) 0 pour t ^ tl > 1.

Enfin, on pose

et

F fit) 1 - F fit pour 0 < t < 1

F0 1 - Fx

Alors la série £((p, x, co) peut s'écrire comme une somme E E0 + Ex avec

F0((p, x, co)

Efiq>, x, co)

co(det tx) 0(cp, x, t) F0{\t\Ak)d[i(t)
k"\Ak

co(det x) 0(cp, x, t) Ffi\t\Ak)dp(t).
h*\Ak
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L'intégrale E0(cp, x, cd) est une fonction entière définie sur l'ensemble de tous
les quasi-caractères.

Choisissons B > 1. Pour er e R, a ^ B, teR+, on a

tnaF0(t) ^ t\f ~ß) • tnB

Ceci donne la majoration suivante :

k*\Afc

det tx |J* • | 0((p, x, t) | • F0(|t|AJ dn(t)

<5 t 0 det x I
CT

• It
**\a,c

Ak 0(cp, x, t) | ùp(t),

intégrale qui converge d'après le lemme de la proposition 6 du chapitre III.
Ainsi, on obtient la convergence uniforme de E0(q>, x, co) sur tout compact de

C et l'application co - co) est holomorphe.
On exprime à présent l'intégrale E1 en fonction de l'intégrale E0 en

utilisant la formule de Poisson. Pour cela, on fait le changement de variables
Ce changement transforme la mesure de Haar p en une mesure

de Haar cp, où c2 1 puisque c'est un homéomorphisme d'ordre 2 de

kx\A£ donc c 1 et on obtient

£1(9, x, co) ©(det txx) • 0(9, x,
k*\Ak

£'o(9, x, cd) + Ri(9, x, cd) — R2{(p, x, cd)

avec

£'0(9, w)
k*\Ak

Rj(9, x, cd) $(0)

©(det t 'x) • | det t lx | ^0(cp,x \t)F0(|t|Afc)d|.i(t),

©(det t-1x) -1 det f_1x: | •

k»\Ak

R2(9, x, co) 9(0) • ©(det t xx) F0(\t\Ak)d\i(t).
k"\Ak

Soit T la matrice de G(Ak) telle qu'on ait l'égalité

(a, b) (aT\b),

où (a\b) désigne le produit scalaire euclidien a^b sur K(Ak); les matrices x

et x sont reliées par la relation

TxT1 - x,
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de sorte que les déterminants de x et 3c sont égaux et

E o(<p,x, ©)

CO *(det tx *) • | det tx x|Ak,0(9>^ \ t)F0(\t\Ak)d[i(t)
k*\Ak

Soit co le quasi-caractère de Ak défini par

&>(t) «= 111 • co_1(r);

alors £o(cp, x, co) £0($, 3c_ 1, co).

D'autre part, si le quasi-caractère co s'écrit

co(t) coo(0-1 t Is,

où co0 est un caractère fixé, représentant de la classe de co, les intégrales R1

et R2 se réécrivent

R^cp, x, co) (p(0)

cp(0)œ ~ *(det x)

©(det tx *)F0
k'\Ak

©öWurW-|U 111"5» • Fod'U«!)

et

9(0) co(det x)

R2(cp,x, ©)

«o'WlW • 0Â;s-n(itk)^2(ifi).

L'intégrale co 0 "(t)dn(t)vaut 1 ou 0 suivant que co"0 est trivial
J k"\Ak

non sur A.k. Notons 8(©0, n) ce facteur, alors

ou

f?i(<p, x, ©) cp(0) • © l(det x)8(©0, t\trsi<F0(\t\Ak)dn2(\t\

R2(q>,x,©) cp(0) ©(det x) 8(©0, n)

Si on note

OÄ;s-F0(it|Ak)dn2(|t|).

X(s)
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on obtient

Ex(cp, x, co) $(0) œ
~~ *(det x) ô(co0, n) X(n(l — 5))

et

R2{ty, x, co) cp(0) co(det x) 8(co0, n) X( — ns).

En utilisant [6] lemme 6, §5, chap. VII, p. 121, il s'ensuit que £(cp, x, cd)

est une fonction holomorphe sur l'ensemble de tous les quasi-caractères sauf

en co(a) co0(a) et co(cz) co0(a) • | a | lorsque co0 parcourt l'ensemble Xn(Al)
des quasi-caractères d'ordre n sur A^; en ces points, la fonction £(cp, x, co)

admet respectivement un pôle simple de résidu — pcp(0) co(det x) et un pôle
n

simple de résidu — - pcp(0) co-1(det x) avec
n

p 1 si k de caractéristique 0 et

p (log Q)~l si k de caractéristique p et N {QV}V6Z •

Enfin, en ce qui concerne l'équation fonctionnelle vérifiée par la série

E(cp, x, co), on a

£(cp, x, co) E0(cp, x, co) 4- E^cp, x, co)

£0(9, V + Eo($> 3c"1, ô) 4- ö(co0, n)[cp(0)c5~*(det x)X(rc(l — s))

4- cp(0)co(det x)X(ns)]

de sorte que

E(cp, x ~\ œ) E0(9, x ~ \ &) 4- E0(cp_ x, co) -h ô(co0, rc)[cp(0)co(det x)X(ns)

4- cp(0)<î) ~ *(det x)^(n(l — 5))]

où la fonction cp_ est définie pour 2, e V(Ak) par

<P-fé) q>(-«.

Comme E0(cp _ x, co) E0(cp, x, co), on obtient pour équation fonctionnel!

vérifiée par les séries d'Eisenstein

E(cp, x, co) £(9, F^œ).
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