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114 F. WIELONSKY

J a(det tx): Y o(&rx)du(r)
K*\Ap geV (k) — {0}

~ ¥ J a(det tx) e(et yx)dp(t)
YePUNG(R) ) A

= E(op, x, ®) .

Chapitre 1V

LE PROLONGEMENT ANALYTIQUE DES SERIES D’EISENSTEIN

Dans la suite, k désigne un corps global, E une extension de dimen-
sion n sur k et V(k) Pespace vectoriel sur k sous-jacent a E.

1. LA FORMULE DE POISSON

Soit y un caractere de A, non trivial, trivial sur k et soit (x, y) Ia
formule bilinéaire symétrique sur V(A,) non dégénérée définie par

(x, y) = Tr(xy),

ou Tr désigne la trace absolue Trg,; alors on peut identifier V(A,) ave:
son dual topologique par l'isomorphisme qui a un ¢lément x de V(A.
associe le caractere y(x, y) de V(A,).

Soit o la mesure de Tamagawa de A, pour laquelle le quotient E\A
est de mesure 1, avec I'identification précédente; la transformée de Fourie
d’une fonction @ de #(V(A,)) est définie par

oy) = j o(x) 1%, y) dafx),  pour  ye V(A,),
V(Ax)

et la formule de Poisson pour le sous-groupe discret a quotient compac
V(k) dans V(A,) s’écrit

Y ooex)= Y o) pour ¢eF(V(AY),

xeV (k) yeV (k)

I'orthogonal de V(k) s'identifiant a V(k).
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PROPOSITION 8. Soit @ une fonction de F(V(A,)); on pose

0o, x,0) = > o)

gV (k) — {0}
pour x € G(A;) et t € A} ; alors
0(, x, 1) + @(0) = | det tx | ,' (B(, X717 + @(0)),

ou X designe la matrice adjointe de la matrice x pour la forme bilinéaire
(a, b):

(ax,b) = (a,b,X), a,beV(A)).
Démonstration. On pose

V(G = oEtx)  pour £ e V(Ay);

alors V(n) = f O(Etx) x(&, n) doyE) .
V(Ax)

Si on fait le changement de variables £ — s = &t, on obtient

Yy = [t J @(sx) x(st™ 1, M) dofs) .

V(Ax)

' Posons encore z = sx; alors

Y(n) = | det tx | 5} f 0(z) x(zx~ 't ™1, m)do(z)

V(Ay)

= | det txlxk“j o(z) x(z, nt ™ X7 V)da(z)
V(Ax)
= |dettx |, oMt x Y).

Appliquons la formule de Poisson:; on obtient équivalence des égalités
suivantes :

> oWE) = Y (n),
EeV (k) neV (k)

@, x, 1) + @(0) = [ detex |5} Y Qe %Y,

nev(k)

09, x, 1) + @0) = |det tx |5} (6(¢, X1, t~ ")+ ¢(0)) .
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2. LE PROLONGEMENT ANALYTIQUE ET L’EQUATION FONCTIONNELLE
DES SERIES D’EISENSTEIN.

Définissons une relation d’équivalence sur les quasi-caractéres de A, :
on dira que deux quasi-caractéres sont équivalents s’ils coincident sur les ideles
A} de module un. Sachant qu’un quasi-caractére trivial sur A} est de la
forme | a |°, s e C, une classe d’équivalence est constituée de tous les quasi-
caracteres de la forme w(a) = wy(a)+|al’, ou w, est un caractere de A,
représentant fixé de la classe et s un nombre complexe déterminé de maniére
unique par ®. On a donc paramétris€ une classe d’¢quivalence de quasi-
caracteres par une variable complexe s et on peut identifier cette classe avec
un plan si k est de caractéristique nulle et avec un cylindre si k est de
caractéristique p.

Choisissons une mesure de Haar sur A, ; sur le groupe compact
k*\A}l, on choisit la mesure de Haar p, telle que p;(k*\A;) = 1.

Soit N le groupe tel que 'on ait la décomposition

KX\AY = k*\A; x N;
on definit une mesure p, sur N par

d
dum) == i N =R,
n

et uy({1}) =1 si N estisomorphea Z.

Sur le groupe k*\A;, on considére la mesure produit p = p; X p,.
Enfin, sur A, on choisit la mesure p dont I''mage dans le quotien:
k*\A . est la mesure définie précédemment. On sait d’apres le chapitre
précédent que la série E(o, x, ®) est holomorphe sur I'ensemble des quasi-
caractéres o de la forme wy(a)-| a|®* avec Re s > 1. Le prolongement analy-
tique et I’équation fonctionnelle des séries d’Eisenstein sont donnés par la

PROPOSITION 9. On peut prolonger analytiquement les séries E(@, x, ®;
a lensemble de tous les quasi-caractéres. Soit X, (A;) le groupe des quasi-
caractéeres dordre n de A}; la fonction prolongée est une fonction
méromorphe dans C et holomorphe sauf si ®e x,(A;) ou si oa
= wo(a)-| a| avec g€ x,(A}); elle admet respectivement en ces points un

pole simple de résidu ip(p(())co(det X) et un péle simple de résidu
n

1 A~ o~
— — po(0)o ~(det x) avec
n
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p=1 si k de caractéristique O,
p=(»ogQ®)™ " si N={0%ez-

Enfin la fonction prolongée vérifie 'équation

E(p, x, ®) = E(@, X%, &),
ou @ estle quasi-caractére de A,  défini par
) = |t]-o ).

Démonstration. On décompose la série E(@, x, o). Les ideles de module un
k*\A} étant de mesure non nulle, on ne peut pas écrire E(p, x, ®) comme
la somme d’une intégrale sur les idéles |t| < 1 et d’une intégrale sur les
idéles | t| = 1. Il faut donc choisir sur R %, deux fonctions continues F,
et F, avec les propriétés suivantes:

(I)F()ZO, F1>O, F0+F1:1

(i1) Il existe un intervalle compact [t,, t,;] dans R tel que

Fo(t) =0 pour O0<t<ty,
Fi(it)=0 pour t>rt,.

On demande de plus que

Fo(t) = F,(t™') pour tout t;
pour cela, on choisit pour F; une fonction continue définie sur t > 1
avec

et Fy()=0 pour t=1t, > 1.

Enfin, on pose

Fit)=1—F,¢t™") pour O0<t<1
et Fo=1—F,.

Alors la série E(o, x, w) peut s’écrire comme une somme E — Ey, + E, avec

Eoo, x, 0) = kax o(det tx) 8(@, x, 1) Fo(|t]x,)dn(t)
k

Ei(o, x, 0) = f , @det x) 8, x, 1) Fy(t],,)dn(z) -

k*\Ay
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L’intégrale E(¢, x, ®) est une fonction entiére définie sur 'ensemble de tous
les quasi-caracteres.
Choisissons B > 1. PourceR, 0 < B,teR}, ona

t"Fo(t) < the™B . B

Ceci donne la majoration suivante:

J L detex 3% -1 8(q, x, 1) | - Folltla,) dp(t)

k*\Ay

< t'é‘“—B"J detx (o[ ]50 - 6(e, x, 6) | du(t) ,

k*\Ag

intégrale qui converge d’aprées le lemme de la proposition 6 du chapitre III.
Ainsi, on obtient la convergence uniforme de E (@, x, ®) sur tout compact de
C et Papplication ® — E,(o, x, ®) est holomorphe.

On exprime a présent lintégrale E, en fonction de l'intégrale E, en
utilisant la formule de Poisson. Pour cela, on fait le changement de variables
t+— t~ 1. Ce changement transforme la mesure de Haar p en une mesure
de Haar cp, ou ¢? = 1 puisque c’est un homéomorphisme d’ordre 2 de
k*\A; , donc ¢ = 1 et on obtient

El((p> X, (D) = J 2 0‘)(det t 1X) * e((pa X, t 1)F0(|t|Ak)du(t)
k*\Ay

= E,O((p> X, (D) + Rl((p, X, (D) - Rz((P, X, (D) s

avee

Eo(o, x, ) = J o(det £~ x) « | det 7 x | 5.} 0(¢, X 71, 6)F o(ltl, )dp(2), i

% x ¥
k*\Ay !

Ry(p, x, w) = CP(O)'J _o(det t77x) « [det t7 x| 1+ Folltla,Jdne) , |
kX \Ay,

Ry (¢, x, w) = ¢(0) j _o(det t71x) FoJtla)ap(t) .

H

i

k*\Ag %

Soit T la matrice de G(A,) telle qu’on ait ’égalité
(a,b) = (aTlb),

ou (alb) désigne le produit scalaire euclidien a-'b sur V(A,); les matrices x
et X sont reliées par la relation

1
(TUx T = % id
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de sorte que les déterminants de x et X sont égaux et
Eo(9, x, ®)

= J o7 (det tx 1)+ [ det X T [, - 0(, X 7Y, OF o[t )dR()
k*\Ay

Soit & le quasi-caractere de A,° défini par

o) = [t]- o ' (1);
alors Ey(o, x,®) = Eo(@, X1 D).
D’autre part, si le quasi-caractére ® s’écrit

o) = o) - 1]°,

ou ®, est un caractere fixe, représentant de la classe de o, les intégrales R,
et R, se réécrivent

Ry(, x, ®) = ¢(0) - f d(det tx ™) Fo([t] o, )dnt)

kK \Ap

= ¢(0)d ~*(det X)f . w61(t")du1(t)'J [ £1Re ™ Folltla)dna(tl)
N

k*\Ag
et
R, x, o)
= ¢(0) w(det x) J 00 (1M (8) - f | 214« Folltla)dp,(I) -
k*\Aj N
L'intégrale jkx\A o "(t)du(t) vaut 1 ou O suivant que o} est trivial ou
k

non sur A, . Notons 8(w,, n) ce facteur, alors

Ry, x, @) = ¢(0) &~ (det x)3(wo, n)'[ | 1% 77+ Folltladua(t))

N

et

Ry(¢, x, ©) = ¢(0) o(det x) §(w,, H)J |t 14"+ Folltla)dpa(]t)) -
N

Si on note

Ms) = JN | 1% Fo(ltla,)du,(t) ,
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on obtient
Ry (o, x, ®) = @(0) &~ *(det x) 8wy, n) Mn(1l —53))
et
R,(9, x, ®) = ¢(0) o(det x) 8(wg , 1) A(—ns) .

En utilisant [6] lemme 6, §5, chap. VII, p. 121, il s’ensuit que E(o, x, o)
est une fonction holomorphe sur ’ensemble de tous les quasi-caracteres sauf
en w(a) = wy(a) et o(a) = wy(a)*| a| lorsque w, parcourt I'ensemble X ,(A})
des quasi-caractéres d’ordre n sur A}l; en ces points, la fonction E(, x, ®)

1
admet respectivement un pole simple de résidu — p(0) w(det x) et un pdle
n
simple de résidu — — p(0) & ~(det x) avec
n

p=1 si kde caractéristique O et
p=(logQ)~" si kde caractéristique pet N = {Q"},.z -
Enfin, en ce qui concerne I’équation fonctionnelle vérifiée par la série
E(op, x, ®), on a
E((-p’ X, (D) = EO((Pa X, ('0) + El(@) X, 0))
= EO((Ps X, (D) + EO((BJ 56 - 1> (b) + 6((’00 s n)[(/b(o)é\) - l(det X)X(n(l _S))
+ o(0)m(det x)A(ns)],

de sorte que

E@,%x L 0) = Eo(e, X 1L, ®) + Eo(op_, x, ®) + 8w, n)[@O)n(det x)A(ns)
+ @(0)d ~Y(det x)Mn(1—s))] ,

ou la fonction ¢ _ est définie pour & € V(A,) par

0_(&) = o(=9).

Comme Eq(o_, x, ®) = Ey(o, x, ®), on obtient pour equation fonctionnell
vérifiée par les séries d’Eisenstein

A

E(@, x,®) = E(@,x %, d).
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