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SERIES D’EISENSTEIN 103

Soit 7, une uniformisante de k,; on choisira comme mesure de Haar
sur k*, la mesure dp, définie par
|7, |, do(x)

|, l, — 1 Ixl

dpy(x) =
de sorte que l'on a le:

LEMME. Pour toute place finie v,

J duv(x) = m,.
[x]v=1

Démonstration.
[0 6]
m, = J do,(x) = J do(x) = ). . doy(x)
Xery, |x|vs1 n=0J |x|y=|mu},

0 1 -1
S NEA R f da,(x) = <1 - ) J o (x)
n=0 [x|,=1 [TCU IU [x]v=1

EN dot,(x)
= - v = d .
L o T el ) g e

Alors on définit la mesure de Haar p sur A, comme l'unique mesure
coincidant avec la mesure produit []p, sur chacun des sous-groupes
v

[Tk -1

veP v¢P

2. SERIES D’EISENSTEIN

Dans la suite, G désignera le groupe algébrique GL,; V un espace
vectoriel de dimension n, e = (0,..,0,1) le dernier élément de la base
canonique de V et F(V(A,)) lespace des fonctions de Schwartz-Bruhat
définies sur le vectoriel V(A,) de la maniére suivante:

On dira d’abord qu’une fonction f & valeurs complexes définie sur le
vectoriel V(A,) est décomposable si elle s’écrit comme un produit

fe) =TT fulx).

Pour les places infinies éventuelles, on demande que f, soit dans L (V(k,))
lespace des fonctions C® & valeurs complexes a décroissance rapide, i.e.
Guel que soit o e N* (avec a = 1 si k, = Ret a = 2 si k, = C) et quel
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que soit N > 1 il existe C > 0 tel que

| 0*f,(t,) | < CAL+ )"

quel que soit t, €k, .
Pour les places finies v, on demande que f, soit dans l’espace des fonc-
tions a valeurs complexes localement constantes et a support compact. On
notera également cet espace ¥(V(k,)). Enfin pour presque toute place finie v,
f, est la fonction caractéristique du réseau r?.

Le C-espace vectoriel #(V(A,)) est alors 'espace des combinaisons linéaires
finies de fonctions décomposables telles que f, € #(V(k,)) pour toute place v.

PROPOSITION 5. Soit x une matrice de G(A,), © une fonction de
F(V(Ay), © wun quasi-caractére de A} (i.e. un morphisme continu de
A dans C* trivial sur k™), o [lunique réel tel que

o] = 0, ou o) =|t]%,.;
alors lintégrale
M(p, x, ®) = J (et x)o(det tx)dp(t)
A x
converge pour o réel plus grand que 1/n.

Démonstration. On peut supposer que la matrice x est la matrice unit¢
et que la fonction ¢ est décomposable:

¢=[lo,. o,eF(Vik,))
v
et ¢, est la fonction caractéristique de r! pour presque toute place finie
Soit K, le support de la fonction ¢,, 1l existe un entier c, tel que
K,cn,“-ry,

ou r? désigne le r,-module engendré dans V(k, par la base canoniqua..f
Soit &, la fonction caractéristique de m, - et M, le réel positif défini pe -

M, = sup | @ x)|; »

xeV(ky)

on a I’égalité suivante:

| 0,x) | < M, - 0,(x).
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D’autre part
f Glety) | 1, 107 duft,) = J e 187 dit)
kS tol, SImuly

car
et, = (0,..,0,t)em, @ 1}y
si et seulement si

leol, <Pl

Mais
e ]
J ‘ tu |2° duv(tv) = Z , l ch “‘)vnc duu(tv) .
ltol S|muly 7 ro=—cv J |to| = |mulp”
Posons g, = | ®, |, ' > 1; on obtient:
2. 4. f du(t,) = my g™ Y q,""
Fv= "¢y [tulvzl rv:O

= m,q"(1—q, ") ! lorsque ¢ > 0.

Les réels M, et m, sont presque toujours égaux a 1 et lentier ¢, presque
toujours nul, donc le produit des intégrales

J L oety) |12, 170 it
k

v

aux places finies est convergent lorsque le produit [](1—g¢, ™)' converge,
v

c’est-a-dire quand no > 1 ou encore ¢ > 1/n.

Aux places infinies l'intégrale converge si elle converge a lorigine
autrement dit si o > 0. La proposition 5 est démontrée.

Soit P le sous-groupe de G des matrices qui s’écrivent

a b
0 d
ou a est une matrice de GL,_,, b est un vecteur colonne ayant (n—1)

composantes, d est un ¢lément de P'anneau de base tel que d-deta soit

inversible dans cet anneau; on définit les séries d’Eisenstein de la maniére
suivante
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PROPOSITION 6. Pour x e G(A,), © un quasi-caractére de A tel que

lo| = 0,, o©eR,
la serie
E(p,x,0) = )  M(o, yx, »)
yeP(k)\G(k)

converge pour o > 1, on lappelle la série d’ Eisenstein associée a la fonction
¢ de L(V(AY).

Enongons d’abord le résultat suivant:

LEMME. L’intégrale
I, = J el Y ) | dul)
K*\Ap EeV (k) — {0}
est convergente si ¢ > 1.

Démonstration. Comme la fonction ¢ de #(V(A,)) est quelconque, on
peut supposer x = 1.

A) k de caractéristique 0.

Soit P, I'ensemble des places infinies de k, on pose:

QP,) = [] kX[ r>.

veP ug_&Pw

On sait que le groupe Q(P.)-k*\A, est fini, isomorphe au groupe (,
des classes d’idéaux de k. Soit Y un systéme de représentants dans A
du quotient Q(P_)-k*\A, ; lapplication canonique de Y -€(P,) dars
k*\A, est surjective.

Supposons qu’un élément o de k*\A [ s’écrive de deux maniéres distincte. :

A = Y0y = y0,,
avec
Vi,V,€Y et o;,0,eQP,).
Alors il existe o dans k™ tel que
Ay;0; = Y203,

ce qui entraine I’égalité de y, et y, car ce sont des représentants d1!|
quotient k* - QP )\A " . Ainsi
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cest-a-dire aer’™, r désignant I'anneau des entiers de k. On a donc un
isomorphisme

Y r*\QP,) > k™" \A; .

L'intégrale I, se réécrit
g 1

n

I =} Iyt 2 eyl due)
yeY J ter \Q(P ) teV(k) — {0}
< ) [yl X leEyn)|du@).
yeY J teQ(P ) EeV(k) — {0}

La fonction ¢ étant quelconque, on se borne a étudier la convergence de

f Y leEn ]l t]ne du),

teQ(P ) &eV (k) —{0}

ou encore celle de

L= ) j | O(&0) |+ ]| du(r),
EeV (k) —{0} teQ(P )

ce qui se réécrit

(1) 12 = E_,eV(g—{O} l: H Iu(&). H JU(EA):I s

vePOo véePOO
avec
I1,(€) = f N OUEL) [, 172 dpy(e,)
tyek,
Jo8) = f L euEt) - duyt,),
tuerv
et

[t ], =121 si k, =R,
=|t,|* i k, = C.

Comme dans la démonstration de la proposition 2, on note K, le support
de la fonction @,, ¢, entier tel que

—c,
K,cmn, .pn

v -




108 F. WIELONSKY

De plus, on note o, la fonction caractéristique de m, - r} et M, le réel
positif défini par

M, = sup | @, x)|

xeV(ky)

(I'entier ¢, est nul et le réel M, vaut 1 pour presque toutes les places
finies v). Alors

2) [17.<11 M,;J (L)L) -
vgP vEP tuer,,
Donnons une condition sur  pour qu’en toute place finie v, &t, e m, - r).
Soit f = [] I=n,|, €N < r (r anneaux des entiers de k), alors
vésPOG
| fle =17, 1575

on a les équivalences successives suivantes:
Eoen, ery= 8], <Im |, = 8], < | fl, =] fEl, < 1< fElery;

et on en déduit que &t, sera dans m,  r) pour tout v fint si et seulement
si&e f71r SiE¢ f1 " l'une au moins des intégrales J,(E) est nulle et il
suffit donc, dans la définition de I,, de sommer sur les £ € f'r". On en
déduit alors de (1) et (2) la majoration

L< ¥ ( Lo 1 M, j xduv<rv>>,

E,ef"lr" UEPOO UéPOO

puis

12<<H MM) 2 [H Iv(i):l,

vésPoo Eef ~ 1rn ueP00

ou m, est le réel positif défini en I11.1.
Mais les fonctions ¢, ou v est une place infinie sont a décroissance rapi €
donc:

[11e< I CJ DTN g1 di,)

vePOO veP tuek,,

ouna =1sik,=R, ao=2s1k,=C.
On fait le changement de variables suivant:

i T o
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si v est une place réeelle: u, = | &\l -t,,
si v est une place complexe: u, = || E*-t,,
alors | u, |kv =&t lku de sorte que

15L& <1el™™ ] Cuy J )7y 1 du(w,)

veP veP uyek,,

ou d désigne la dimension de k sur Q.
— Si k, = R, lintégrale correspondante dans le produit se réecrit:

~ dt
J (L)) N[ t]™—
teR * |t|

intégrale qui converge a linfini si N est choisi assez grand et en 0 si
ag> 0.

— Si k, = C, I'intégrale se réecrit:
2J 14z V.| z|?™ 2dxdy = 2 J J (1+p3)~¥.p?"~1dp do
zeC* pJ B

— 4th (1+p2)—N. p2nc—1 dp,
p

intégrale qui converge a l'infini si N est choisi assez grand et en O si
2no—1 > —1 cest-a-dire si o > 0.

Il reste @ montrer la convergence de la série

2 e = Y ST = S Y T

Eef ~1rn Eern Eern

on est donc ramené a la convergence de

P3N RS oy

Eern

Si la norme utilisée est la norme définie par

H & H = sup l &i l pour E.) = (gl 3 ey E.vn) 5

on obtient les égalités suivantes:
LIEI ™™ = % suplg |
Eern E1,.ony Endern i

= Y sup|zio, + .. + ziw, | ~"?,

zeZnd |
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avec z = (21, 23,2, . 2h), €t (@4, .., ®;) est une base fondamentale |
Co
du Q-espace vectoriel k. Ainsi |

2 e < oy |74 Y sup |z + o+ ozg T,

Eern zeZnd |

ou ;, est un ¢lément de la base fondamentale tel que

|, | = sup |o;].

i=1lan
On a encore les majorations suivantes:

Z H i ” —nod < I(Dio I - nod Z d—ncd sup Sllp | Zj- ' —nod

tern zeZnd i J
= [doy, | "™ Y sup|z§[ =
zeZnd |, j
= |do, | 7" Y fz | 7",
zeZnd

On sait que la série | z || ~"°* converge pour ¢ > 1.
q g p

zeZnd

B) k de caractéristique p

On suppose que k est une extension algébrique de dimension finie du
corps F,(T). Pour chaque place v de k, k, est de caractéristique p et si x
est un élément de k., le nombre | x|, est dans le sous-groupe I', de
R engendré¢ par p. La méme chose est vraie pour le module |z|,,
ou z est un élément de A, . L’image de A, par le morphisme z |z |,,
est un sous-groupe non trivial du groupe I',. Supposons qu’il soit engendré
par un entier Q = p~ avec N entier > 1.

Choisissons z; dans A, tel que: |z, |,, = Q. Alors A, est le produit
direct de A} et du sous-groupe noté I' engendré par z, évidemment iso-
morphe a Z. D’autre part, on pose "

Ap) = []r,,

on sait que le groupe quotient Q(d) - k“\A} est fini. C’est le groupe isomorphe
au groupe des classes de diviseurs de degré 0. (Voir [6], p. 97).

Soit Y un systéme de représentants dans A, de ce quotient; Papplication
canonique de I' - Y dans Q(¢d)- k*\A, est bijective et on a également un
isomorphisme

kK \AY - T Y(QP)nk ™\ QD))




SERIES D’EISENSTEIN 111

ou encore
K \A) - T+ Y(F\Qd)),

ou F, est le corps des constantes de k cest-a-dire le corps fini maximal
contenu dans k. Ainsi lintégrale I, se réecrit

yeY meZ teV (k) —{0}

I =) ) j lzp e Y, TeEzTy) | dud)
(eF\2(0)

yeY meZ teV (k) — {0}

<Y ) J 270 Y 1 e@zTyn) | du()
1eQ($)
La fonction @ étant quelconque, on se borne a étudier la convergence de

ZJQ(¢)Ilexi- Yo leEzTt) | du),

mel EeV (k) — {0}

ou encore celle de

L=y lz % X J Q(‘ml(P(iZ’{‘t)ldu(lf)

meZ EeV (k) —{0}

NN D) HJ &zt [ty

meZ EeV(k)—{0} v tyer,

ou z, , désigne la composante en la place v de l'idele z; .
Déterminons un idéle z, particulier; on le choisit tel que: z; = (z;,)
avec z; , = 1 pour v # Vg, Z; ,, = T,,, Vo €tant une place quelconque de k.

Alors l'intégrale I, se réecrit:

L=y (l T, ™Y [.,H J 8- f x 1mvo(az,,on::;)Idu,m(rvo)]),

meZ EeV (k) —{0} Fvo %o

ou comme précédemment J,(§) désigne 'intégrale

J®) = j e |- dut).

v

01} suppose toujours que @ = [] @, est une fonction décomposable de
#{V(A)) et que, pour toute place v, | @,| < M,5,, ol o, est la fonction
caf'actéristique de m, - ri. Pour que le produit contenu dans I’expression [
soit non nul, il faut que I'¢lément & de V(k) — {0} vérifie les conditions
Suivantes:
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HE.'HU< |nv Iv pOur 0#007
<

(RIS

_v—m|
'|TCUQO vg

Posons
L,=p,%, Ly, =pPy™™, et L,=(L),;
alors L, est un systéme cohérent de k,-réseaux de rang 1. (Voir [6],
p. 97).
Soit A(L,) = kn ([] L,), A(L,) est un espace vectoriel sur le corps F g

des constantes de k dont on note sa dimension A(L,). (Voir [6], p. 97).
Le produit contenu dans I, est non nul (pour m fixé) si et seulement si

& € A(L,,).

D’autre part, soit a,, le diviseur associ¢ au systéeme L,,:

am = Z CUU + (Cvo+m)UO;

vFvo

on sait que si son degré

dega, = ) c¢,degv + (c,,+m)deg v,

vFvg

est strictement négatif, c’est-a-dire si

m<—c,, — (degvg)™'+ > c,degv = M,

vFvo

alors AM(L,,) = 0 (voir [6], p. 100).
Il suffit donc dans l'expression I, de sommer pour m > M de sorte que

Zg(HMvmv) Z |nvolmno' Z (1)

m=2M EeA(Lm)"—{0}

On doit étudier la convergence de

Z | Ttvo Imnc (an(L'm)_ 1) )

m2M
Sachant que pour m assez grand, le théoreme de Riemann-Roch donne
I'égalité

}\‘(Lm) = degam_g + la

ol g est le genre de k (voir [6], Cor. 2 du Théoréme 2, p. 101), on est |
ramené a la convergence de N

—mno deg vg ,nmdegvo __ deg vo(1l —o)mn
Y q q = 2 4 :

m2M m2M




SERIES D’EISENSTEIN 113

Cette série converge pour ¢ > 1.
Le résultat de la proposition 6 se déduit alors de:

PROPOSITION 7. On a légalité

E(p, x, ®) = J ) o(det tx) - Y o(Erx)du(t)
k*\Ay

geV (k) — {0}
pour @ quasi-caractere d’exposant © > 1.
Démonstration. On construit 'application suivante:
P(k)\G(k) x k™ - V(k) — {0}
(v, u) = eu v,
ou Y, est une matrice dans la classe de y dont le premier élément non
nul sur la derniére ligne est égal a 1.

Puisque cette application est bijective, on peut écrire la série absolument

convergente  »  ¢(&tx) comme
gev () - {0}

¢ (eu yo 1x),

uek ™ yeP(k)\G(k)

et par suite

f o(dettx)- Y o(Etx)du(r)
k*\Ap EeV (k) — {0}

”

= Y2 ofdet tx) olewyotx)du(t)

J kx\AkX uek * yeP(k)\G(k)

.
= Y o(det tx) g(et v x)dp(t)

J AL veP(O\G(k)

= > J _ o(det tx) (et o x)dul(z)
YeP(\G(K) J A,
puisqu’on a ici convergence absolue. Mais l'intégrale

M(e, vox, w) = J . Pt yo x)o(det rx)dp(t)

Ay

ne dépend pas du représentant choisi dans la classe vy de P(k)\G(k), ainsi
~ On a bien
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J a(det tx): Y o(&rx)du(r)
K*\Ap geV (k) — {0}

~ ¥ J a(det tx) e(et yx)dp(t)
YePUNG(R) ) A

= E(op, x, ®) .

Chapitre 1V

LE PROLONGEMENT ANALYTIQUE DES SERIES D’EISENSTEIN

Dans la suite, k désigne un corps global, E une extension de dimen-
sion n sur k et V(k) Pespace vectoriel sur k sous-jacent a E.

1. LA FORMULE DE POISSON

Soit y un caractere de A, non trivial, trivial sur k et soit (x, y) Ia
formule bilinéaire symétrique sur V(A,) non dégénérée définie par

(x, y) = Tr(xy),

ou Tr désigne la trace absolue Trg,; alors on peut identifier V(A,) ave:
son dual topologique par l'isomorphisme qui a un ¢lément x de V(A.
associe le caractere y(x, y) de V(A,).

Soit o la mesure de Tamagawa de A, pour laquelle le quotient E\A
est de mesure 1, avec I'identification précédente; la transformée de Fourie
d’une fonction @ de #(V(A,)) est définie par

oy) = j o(x) 1%, y) dafx),  pour  ye V(A,),
V(Ax)

et la formule de Poisson pour le sous-groupe discret a quotient compac
V(k) dans V(A,) s’écrit

Y ooex)= Y o) pour ¢eF(V(AY),

xeV (k) yeV (k)

I'orthogonal de V(k) s'identifiant a V(k).
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