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102 F. WIELONSKY

ce qui prouve que

fi_1(/£(c)) Mv_1(c))

et démontre la proposition.

Chapitre III

Définition et convergence des séries d'Eisenstein

Dans tout ce chapitre, k désignera un corps global et Ak les adèles

de k.

1. Mesures sur Ak et Ak

On s'intéresse d'abord aux places infinies de k (dans le cas où
l'extension k est un corps de nombres). Sur le corps R, on choisit la mesure
de Lebesgue usuelle notée dx et sur le groupe multiplicatif Rx, on choisit

dx
la mesure de Haar Sur le corps C, on choisit la mesure

I X I

\dz A dz\ 2dx dy

et sur le groupe multiplicatif Cx, on prend comme mesure la mesure de

Haar:

| z |
~ 2

| dz A dz |

Pour chaque place finie v de /c, on note uv une mesure de Haar sur kv

complété de k en cette place. Soit rv le sous-anneau compact maximal de kv

on suppose que pour presque tout v, le réel positif mv av(rv) est égal à 1

Alors sur le corps global Afc, il existe une unique mesure notée a qu
coïncide avec la mesure produit na„ sur chacun des sous-groupes ouvert;

EK-EK de Ak où P est un ensemble fini de places de k contenant ai
veP v$P

moins les places infinies. Alors a est une mesure de Haar sur le corps Ak

dOLv(x)
Sur le groupe multiplicatif k*, on sait que la mesure —-— est une mesure

1*1«,

de Haar. (| x \v désignant le module de x e kv).
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Soit nv une uniformisante de kv ; on choisira comme mesure de Haar

sur k *, la mesure d\iv définie par

\nv\v d(*v(x)
d\Lv(x) ]

I

de sorte que l'on a le :

Lemme. Pour toute place finie v,

1 Ixl

dpv(x) mv

Démonstration.

m,

I

|*|„=1

da.v(x)E
|x|v^l " 0

1

dav{x)

dav(x) 1 -
|*|„=1

Wv=KI»
-1

doLv(x)

n»i ^ \v r dav(x)

\ Kv \v - 1 |X|V=1 I X I,
dpv{x).

Mv?i

Alors on définit la mesure de Haar p sur Akx comme l'unique mesure

coïncidant avec la mesure produit Yi th sur chacun des sous-groupes

n*» -r[r» •

veP v$P

2. Séries d'Eisenstein

Dans la suite, G désignera le groupe algébrique GL„; V un espace
vectoriel de dimension n, e — (0,0, 1) le dernier élément de la base

canonique de V et SP(V(Ak)) l'espace des fonctions de Schwartz-Bruhat
définies sur le vectoriel V(Ak) de la manière suivante:

On dira d'abord qu'une fonction / à valeurs complexes définie sur le
vectoriel V(Ak) est décomposable si elle s'écrit comme un produit

/m n u*v)

Pour les places infinies éventuelles, on demande que fv soit dans £f(V(kv))
1 espace des fonctions Cx à valeurs complexes à décroissance rapide, i.e.
quel que soit a e N"" (avec a1 si kvR et 2 si kB C) et quel


	1. Mesures sur $A_k$ et $A_k^x$

