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102 F. WIELONSKY

ce qui prouve que

QY1) = I{v-i(e)

et démontre la proposition.

Chapitre 111

DEFINITION ET CONVERGENCE DES SERIES D’EISENSTEIN

Dans tout ce chapitre, k désignera un corps global et A, les adéles
de k.

1. MESURES SUR A, ET A}

On s’intéresse d’abord aux places infinies de k (dans le cas ou lex-
tension k est un corps de nombres). Sur le corps R, on choisit la mesure
de Lebesgue usuelle notée dx et sur le groupe multiplicatif R, on choisit

X .
la mesure de Haar l—— Sur le corps C, on choisit la mesure
X

|dz A\ dz| = 2dx dy

et sur le groupe multiplicatif C*, on prend comme mesure la mesure de
Haar:

12|72 |dz A d7].

Pour chaque place finie v de k, on note o, une mesure de Haar sur k,
complété de k en cette place. Soit r, le sous-anneau compact maximal de k,
on suppose que pour presque tout v, le réel positif m, = a,(r,) est égal a 1
Alors sur le corps global A,, il existe une unique mesure notée o qu
coincide avec la mesure produit ITa, sur chacun des sous-groupes ouvert:

[[k,-[]r, de A, ou P est un ensemble fini de places de k contenant at
veP véP '
moins les places infinies. Alors a est une mesure de Haar sur le corps A,

do,(x)
est une mesure

Sur le groupe multiplicatif k, , on sait que la mesure x|
X v

de Haar. (| x |, désignant le module de x € k,).
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Soit 7, une uniformisante de k,; on choisira comme mesure de Haar
sur k*, la mesure dp, définie par
|7, |, do(x)

|, l, — 1 Ixl

dpy(x) =
de sorte que l'on a le:

LEMME. Pour toute place finie v,

J duv(x) = m,.
[x]v=1

Démonstration.
[0 6]
m, = J do,(x) = J do(x) = ). . doy(x)
Xery, |x|vs1 n=0J |x|y=|mu},

0 1 -1
S NEA R f da,(x) = <1 - ) J o (x)
n=0 [x|,=1 [TCU IU [x]v=1

EN dot,(x)
= - v = d .
L o T el ) g e

Alors on définit la mesure de Haar p sur A, comme l'unique mesure
coincidant avec la mesure produit []p, sur chacun des sous-groupes
v

[Tk -1

veP v¢P

2. SERIES D’EISENSTEIN

Dans la suite, G désignera le groupe algébrique GL,; V un espace
vectoriel de dimension n, e = (0,..,0,1) le dernier élément de la base
canonique de V et F(V(A,)) lespace des fonctions de Schwartz-Bruhat
définies sur le vectoriel V(A,) de la maniére suivante:

On dira d’abord qu’une fonction f & valeurs complexes définie sur le
vectoriel V(A,) est décomposable si elle s’écrit comme un produit

fe) =TT fulx).

Pour les places infinies éventuelles, on demande que f, soit dans L (V(k,))
lespace des fonctions C® & valeurs complexes a décroissance rapide, i.e.
Guel que soit o e N* (avec a = 1 si k, = Ret a = 2 si k, = C) et quel
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