Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 31 (1985)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SÉRIES D'EISENSTEIN, INTÉGRALES TOROÏDALES ET UNE

FORMULE DE HECKE

Autor: Wielonsky, Franck

Kapitel: DÉFINITION ET CONVERGENCE DES SERIES D'EISENSTEIN

DOI: https://doi.org/10.5169/seals-54560

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ce qui prouve que

$$\Omega^{-1}(I_E(c)) = I_T(v^{-1}(c))$$

et démontre la proposition.

Chapitre III

DÉFINITION ET CONVERGENCE DES SÉRIES D'EISENSTEIN

Dans tout ce chapitre, k désignera un corps global et A_k les adèles de k.

1. Mesures sur \mathbf{A}_k et \mathbf{A}_k^{\times}

On s'intéresse d'abord aux places infinies de k (dans le cas où l'extension k est un corps de nombres). Sur le corps \mathbf{R} , on choisit la mesure de Lebesgue usuelle notée dx et sur le groupe multiplicatif \mathbf{R}^{\times} , on choisit la mesure de Haar $\frac{dx}{|x|}$. Sur le corps \mathbf{C} , on choisit la mesure

$$|dz \wedge d\bar{z}| = 2dx dy$$

et sur le groupe multiplicatif C^* , on prend comme mesure la mesure de Haar:

$$|z|^{-2} |dz \wedge d\bar{z}|$$
.

Pour chaque place finie v de k, on note α_v une mesure de Haar sur k_v complété de k en cette place. Soit r_v le sous-anneau compact maximal de k_v on suppose que pour presque tout v, le réel positif $m_v = \alpha_v(r_v)$ est égal à 1 Alors sur le corps global \mathbf{A}_k , il existe une unique mesure notée α que coı̈ncide avec la mesure produit $\Pi\alpha_v$ sur chacun des sous-groupes ouvert $\prod_{v \in P} k_v \cdot \prod_{v \notin P} r_v$ de \mathbf{A}_k où P est un ensemble fini de places de k contenant au moins les places infinies. Alors α est une mesure de Haar sur le corps \mathbf{A}_k Sur le groupe multiplicatif k_v^{\times} , on sait que la mesure $\frac{d\alpha_v(x)}{|x|_v}$ est une mesure de Haar. ($|x|_v$ désignant le module de $x \in k_v$).

Soit π_v une uniformisante de k_v ; on choisira comme mesure de Haar sur k_v^{\times} , la mesure $d\mu_v$ définie par

$$d\mu_{v}(x) = \frac{\mid \pi_{v}\mid_{v}}{\mid \pi_{v}\mid_{v} - 1} \cdot \frac{d\alpha_{v}(x)}{\mid x\mid_{v}},$$

de sorte que l'on a le:

LEMME. Pour toute place finie v,

$$\int_{|x|_v=1} d\mu_v(x) = m_v.$$

Démonstration.

$$m_{v} = \int_{x \in r_{v}} d\alpha_{v}(x) = \int_{|x|_{v} \leq 1} d\alpha_{v}(x) = \sum_{n=0}^{\infty} \int_{|x|_{v} = |\pi_{v}|_{v}^{+n}} d\alpha_{v}(x)$$

$$= \sum_{n=0}^{\infty} |\pi_{v}|^{-n} \int_{|x|_{v} = 1} d\alpha_{v}(x) = \left(1 - \frac{1}{|\pi_{v}|_{v}}\right)^{-1} \int_{|x|_{v} = 1} d\alpha_{v}(x)$$

$$= \frac{|\pi_{v}|_{v}}{|\pi_{v}|_{v} - 1} \int_{|x|_{v} = 1} \frac{d\alpha_{v}(x)}{|x|_{v}} = \int_{|x|_{v} = 1} d\mu_{v}(x).$$

Alors on définit la mesure de Haar μ sur \mathbf{A}_k^{\times} comme l'unique mesure coïncidant avec la mesure produit $\prod_v \mu_v$ sur chacun des sous-groupes $\prod_{v \in P} k_v^{\times} \cdot \prod_{v \neq P} r_v^{\times}$.

2. Séries d'Eisenstein

Dans la suite, G désignera le groupe algébrique GL_n ; V un espace vectoriel de dimension n, e = (0, ..., 0, 1) le dernier élément de la base canonique de V et $\mathcal{S}(V(\mathbf{A}_k))$ l'espace des fonctions de Schwartz-Bruhat définies sur le vectoriel $V(\mathbf{A}_k)$ de la manière suivante:

On dira d'abord qu'une fonction f à valeurs complexes définie sur le vectoriel $V(\mathbf{A}_k)$ est décomposable si elle s'écrit comme un produit

$$f(x) = \prod_{v} f_{v}(x_{v}).$$

Pour les places infinies éventuelles, on demande que f_v soit dans $\mathcal{S}(V(k_v))$ l'espace des fonctions C^{∞} à valeurs complexes à décroissance rapide, i.e. quel que soit $\alpha \in \mathbb{N}^{an}$ (avec a = 1 si $k_v = \mathbb{R}$ et a = 2 si $k_v = \mathbb{C}$) et quel

que soit N > 1 il existe C > 0 tel que

$$|\partial^{\alpha} f_{v}(t_{v})| \leq C(1+||t_{v}||)^{-N}$$

quel que soit $t_v \in k_v$.

Pour les places finies v, on demande que f_v soit dans l'espace des fonctions à valeurs complexes localement constantes et à support compact. On notera également cet espace $\mathcal{S}(V(k_v))$. Enfin pour presque toute place finie v, f_v est la fonction caractéristique du réseau r_v^n .

Le C-espace vectoriel $\mathcal{S}(V(\mathbf{A}_k))$ est alors l'espace des combinaisons linéaires finies de fonctions décomposables telles que $f_v \in \mathcal{S}(V(k_v))$ pour toute place v.

Proposition 5. Soit x une matrice de $G(\mathbf{A}_k)$, φ une fonction de $\mathcal{S}(V(\mathbf{A}_k))$, ω un quasi-caractère de \mathbf{A}_k^{\times} (i.e. un morphisme continu de \mathbf{A}_k^{\times} dans \mathbf{C}^{\times} trivial sur k^{\times}), σ l'unique réel tel que

$$|\omega| = \omega_{\sigma}$$
 où $\omega_{\sigma}(t) = |t|_{\mathbf{A}_{\kappa}}^{\sigma}$;

alors l'intégrale

$$M(\varphi, x, \omega) = \int_{\mathbf{A}_{k} \times} \varphi(\operatorname{et} x) \omega(\operatorname{det} tx) d\mu(t)$$

converge pour σ réel plus grand que 1/n.

Démonstration. On peut supposer que la matrice x est la matrice unité et que la fonction φ est décomposable:

$$\varphi = \prod_{v} \varphi_{v}, \quad \varphi_{v} \in \mathcal{S}(V(k_{v}))$$

et φ_v est la fonction caractéristique de r_v^n pour presque toute place finie :. Soit K_v le support de la fonction φ_v , il existe un entier c_v tel que

$$K_v \subset \pi_v^{-c_v} \cdot r_v^n,$$

où r_v^n désigne le r_v -module engendré dans $V(k_v)$ par la base canonique. Soit σ_v la fonction caractéristique de $\pi_v^{-c_v} \cdot r_v^n$ et M_v le réel positif défini par

$$M_v = \sup_{x \in V(k_v)} | \varphi_v(x) |;$$

on a l'égalité suivante:

$$|\varphi_v(x)| \leqslant M_v \cdot \sigma_v(x)$$
.

D'autre part

$$\int_{k_{v}^{\times}} \sigma_{v}(et_{v}) \cdot |t_{v}|_{v}^{n\sigma} d\mu_{v}(t_{v}) = \int_{|t_{v}|_{v} \leq |\pi_{v}|_{v}^{-c_{v}}} |t_{v}|_{v}^{n\sigma} d\mu_{v}(t_{v}),$$

car

$$et_v = (0, ..., 0, t_v) \in \pi_v^{-c_v} \cdot r_v^n$$

si et seulement si

$$|t_v|_v \leqslant |\pi_v|_v^{-c_v}.$$

Mais

$$\int_{|t_{v}| \leq |\pi_{v}|_{v}^{-c_{v}}} |t_{v}|_{v}^{n\sigma} d\mu_{v}(t_{v}) = \sum_{r_{v}=-c_{v}}^{\infty} \int_{|t_{v}|_{v}=|\pi_{v}|_{v}^{r_{v}}} |\pi_{v}|_{v}^{r_{v}n\sigma} d\mu_{v}(t_{v}).$$

Posons $q_v = |\pi_v|_v^{-1} > 1$; on obtient:

$$\sum_{r_v=-c_v}^{\infty} q_v^{-r_v n \sigma} \cdot \int_{|t_v|_v=1} d\mu_v(t_v) = m_v q_v^{c_v n \sigma} \cdot \sum_{r_v=0}^{\infty} q_v^{-r_v n \sigma}$$

$$= m_v q_v^{c_v n \sigma} (1 - q_v^{-n \sigma})^{-1} \quad \text{lorsque } \sigma > 0 .$$

Les réels M_v et m_v sont presque toujours égaux à 1 et l'entier c_v presque toujours nul, donc le produit des intégrales

$$\int_{k_v} |\varphi_v(et_v)| \cdot |t_v|_v^{n\sigma} d\mu_v(t_v)$$

aux places finies est convergent lorsque le produit $\prod_{v} (1 - q_v^{-n\sigma})^{-1}$ converge, c'est-à-dire quand $n\sigma > 1$ ou encore $\sigma > 1/n$.

Aux places infinies l'intégrale converge si elle converge à l'origine autrement dit si $\sigma > 0$. La proposition 5 est démontrée.

Soit P le sous-groupe de G des matrices qui s'écrivent

$$\left(\begin{array}{ccc} a & b \\ 0 & d \end{array}\right)$$

où a est une matrice de GL_{n-1} , b est un vecteur colonne ayant (n-1) composantes, d est un élément de l'anneau de base tel que $d \cdot \det a$ soit inversible dans cet anneau; on définit les séries d'Eisenstein de la manière suivante:

Proposition 6. Pour $x \in G(\mathbf{A}_k)$, ω un quasi-caractère de \mathbf{A}_k^{\times} tel que

$$|\omega| = \omega_{\sigma}, \quad \sigma \in \mathbf{R},$$

la série

$$E(\varphi, x, \omega) = \sum_{\gamma \in P(k) \setminus G(k)} M(\varphi, \gamma x, \omega)$$

converge pour $\sigma>1$; on l'appelle la série d'Eisenstein associée à la fonction ϕ de $\mathcal{S}(V(\mathbf{A}_k))$.

Enonçons d'abord le résultat suivant:

LEMME. L'intégrale

$$I_1 = \int_{k^{\times} \backslash \mathbf{A}_k^{\times}} |t|^{n\sigma} \cdot \sum_{\xi \in V(k) - \{0\}} |\varphi(\xi t x)| d\mu(t)$$

est convergente si $\sigma > 1$.

Démonstration. Comme la fonction φ de $\mathcal{S}(V(\mathbf{A}_k))$ est quelconque, on peut supposer x=1.

A) k de caractéristique 0.

Soit P_{∞} l'ensemble des places infinies de k, on pose:

$$\Omega(P_{\infty}) = \prod_{v \in P_{\infty}} k_v^{\times} \cdot \prod_{v \notin P_{\infty}} r_v^{\times}.$$

On sait que le groupe $\Omega(P_{\infty}) \cdot k^{\times} \backslash \mathbf{A}_{k}^{\times}$ est fini, isomorphe au groupe C_{k} des classes d'idéaux de k. Soit Y un système de représentants dans \mathbf{A}_{k}^{\times} du quotient $\Omega(P_{\infty}) \cdot k^{\times} \backslash \mathbf{A}_{k}^{\times}$; l'application canonique de $Y \cdot \Omega(P_{\infty})$ dans $k^{\times} \backslash \mathbf{A}_{k}^{\times}$ est surjective.

Supposons qu'un élément α de $k^{\times} \backslash \mathbf{A}_{k}^{\times}$ s'écrive de deux manières distincte :

$$\alpha = y_1 \omega_1 = y_2 \omega_2,$$

avec

$$y_1, y_2 \in Y$$
 et $\omega_1, \omega_2 \in \Omega(P_{\infty})$.

Alors il existe α dans k^{\times} tel que

$$\alpha y_1 \omega_1 = y_2 \omega_2,$$

ce qui entraîne l'égalité de y_1 et y_2 car ce sont des représentants d'a quotient $k^{\times} \cdot \Omega(P_{\infty}) \backslash \mathbf{A}_k^{\times}$. Ainsi

c'est-à-dire $\alpha \in r^{\times}$, r désignant l'anneau des entiers de k. On a donc un isomorphisme

$$Y \cdot r^{\times} \backslash \Omega(P_{\infty}) \to k^{\times} \backslash \mathbf{A}_{k}^{\times}$$
.

L'intégrale I₁ se réécrit

$$I_{1} = \sum_{y \in Y} \int_{t \in r^{\times} \setminus \Omega(P_{\infty})} |yt|^{n\sigma}_{\mathbf{A}_{k}} \cdot \sum_{\xi \in V(k) - \{0\}} |\varphi(\xi yt)| d\mu(t)$$

$$\leq \sum_{y \in Y} \int_{t \in \Omega(P_{\infty})} |yt|^{n\sigma}_{\mathbf{A}_{k}} \cdot \sum_{\xi \in V(k) - \{0\}} |\varphi(\xi yt)| d\mu(t).$$

La fonction ϕ étant quelconque, on se borne à étudier la convergence de

$$\int_{t\in\Omega(P_{\infty})} \sum_{\xi\in V(k)-\{0\}} |\varphi(\xi t)| \cdot |t|^{n\sigma}_{\mathbf{A}_k} d\mu(t),$$

ou encore celle de

$$I_2 = \sum_{\xi \in V(k) - \{0\}} \int_{t \in \Omega(P_{\infty})} |\varphi(\xi t)| \cdot |t|^{n\sigma}_{\mathbf{A}_k} d\mu(t),$$

ce qui se réécrit

(1)
$$I_2 = \sum_{\xi \in V(k) - \{0\}} \left[\prod_{v \in P_{\infty}} I_v(\xi) \cdot \prod_{v \notin P_{\infty}} J_v(\xi) \right],$$

avec

$$\begin{split} I_v(\xi) &= \int_{t_v \in k_v^\times} |\varphi_v(\xi t_v)| \cdot |t_v|_{k_v}^{n\sigma} d\mu_v(t_v), \\ J_v(\xi) &= \int_{t_v \in r_v^\times} |\varphi_v(\xi t_v)| \cdot d\mu_v(t_v), \end{split}$$

et

$$|t_v|_{k_v} = |t_v|$$
 si $k_v = \mathbf{R}$,
= $|t_v|^2$ si $k_v = \mathbf{C}$.

Comme dans la démonstration de la proposition 2, on note K_v le support de la fonction ϕ_v , c_v l'entier tel que

$$K_v \subset \pi_v^{-c_v} \cdot r_v^n$$
.

De plus, on note σ_v la fonction caractéristique de $\pi_v^{-c_v} \cdot r_v^n$ et M_v le réel positif défini par

$$M_v = \sup_{x \in V(k_v)} | \varphi_v(x) |$$

(l'entier c_v est nul et le réel M_v vaut 1 pour presque toutes les places finies v). Alors

(2)
$$\prod_{v \in P_{\infty}} J_v \leqslant \prod_{v \in P_{\infty}} M_v \int_{t_v \in r_v^{\times}} \sigma_v(\xi t_v) d\mu_v(t_v) .$$

Donnons une condition sur ξ pour qu'en toute place finie $v, \xi t_v \in \pi_v^{-c_v} \cdot r_v^n$.

Soit $f = \prod_{v \in P_{\infty}} |\pi_v|_v^{-c_v} \in \mathbb{N} \subset r$ (r anneaux des entiers de k), alors

$$|f|_v = |\pi_v|_v^{c_v};$$

on a les équivalences successives suivantes:

$$\xi t_v \in \pi_v^{-c} \cdot r_v^n \Leftrightarrow |\xi|_v \leqslant |\pi_v|_v^{-c_v} \Leftrightarrow |\xi|_v \leqslant |f|_v^{-1} \Leftrightarrow |f\xi|_v \leqslant 1 \Leftrightarrow f\xi \in r_v^n;$$

et on en déduit que ξt_v sera dans $\pi_v^{-c_v} r_v^n$ pour tout v fini si et seulement si $\xi \in f^{-1} r^n$. Si $\xi \notin f^{-1} r^n$, l'une au moins des intégrales $J_v(\xi)$ est nulle et il suffit donc, dans la définition de I_2 , de sommer sur les $\xi \in f^{-1}r^n$. On en déduit alors de (1) et (2) la majoration

$$I_2 \leqslant \sum_{\xi \in f^{-1}r^{\pi}} \left(\prod_{v \in P_{\infty}} I_v(\xi) \cdot \prod_{v \notin P_{\infty}} M_v \int_{t_v \in r_v^{\times}} d\mu_v(t_v) \right),$$

puis

$$I_2 \leqslant \left(\prod_{v \notin P_{\infty}} M_v \cdot m_v\right) \sum_{\xi \in f^{-1}r^n} \left[\prod_{v \in P_{\infty}} I_v(\xi)\right],$$

où m_v est le réel positif défini en III.1.

Mais les fonctions φ_v où v est une place infinie sont à décroissance rapi e donc:

$$\prod_{v \in P_{\infty}} I_{v}(\xi) \leqslant \prod_{v \in P_{\infty}} C_{v, N} \int_{t_{v} \in k_{v}^{\times}} (1 + \|\xi t_{v}\|)^{-N} \cdot |t_{v}|^{\alpha n \sigma} d\mu_{v}(t_{v}),$$

où $\alpha = 1$ si $k_v = \mathbf{R}$, $\alpha = 2$ si $k_v = \mathbf{C}$.

On fait le changement de variables suivant:

si v est une place réelle:

$$u_v = \| \xi \| \cdot t_v ,$$

si v est une place complexe:

$$u_v = \|\xi\|^{\frac{1}{2}} \cdot t_v,$$

alors $|u_v|_{k_v} = \|\xi\| \cdot |t_v|_{k_v}$ de sorte que

$$\prod_{v \in P_{\infty}} I_{v}(\xi) \leqslant \|\xi\|^{-n\sigma d} \prod_{v \in P_{\infty}} C_{v, N} \int_{u_{v} \in k_{v}^{\times}} (1 + |u_{v}|_{k_{v}})^{-N} \cdot |u_{v}|_{k_{v}}^{n\sigma} d\mu_{v}(u_{v}),$$

où d désigne la dimension de k sur \mathbf{Q} .

— Si $k_v = \mathbf{R}$, l'intégrale correspondante dans le produit se réécrit :

$$\int_{t \in \mathbf{R}^{\times}} (1+|t|)^{-N} \cdot |t|^{n\sigma} \frac{dt}{|t|}$$

intégrale qui converge à l'infini si N est choisi assez grand et en 0 si $\sigma > 0$.

— Si $k_v = \mathbf{C}$, l'intégrale se réécrit:

$$2\int_{z\in\mathbb{C}^{\times}} (1+|z|^{2})^{-N} \cdot |z|^{2n\sigma-2} dx dy = 2\int_{\rho} \int_{\theta} (1+\rho^{2})^{-N} \cdot \rho^{2n\sigma-1} d\rho d\theta$$
$$= 4\pi \int_{\rho} (1+\rho^{2})^{-N} \cdot \rho^{2n\sigma-1} d\rho ,$$

intégrale qui converge à l'infini si N est choisi assez grand et en 0 si $2n\sigma-1>-1$ c'est-à-dire si $\sigma>0$.

Il reste à montrer la convergence de la série

$$\sum_{\xi \in f^{-1}r^n} \parallel \xi \parallel^{-n\sigma d} = \sum_{\xi \in r^n} \parallel f^{-1}\xi \parallel^{-n\sigma d} = \parallel f \parallel^{n\sigma d} \cdot \sum_{\xi \in r^n} \parallel \xi \parallel^{-n\sigma d};$$

on est donc ramené à la convergence de

$$\sum_{\xi \in r^n} \parallel \xi \parallel^{-n\sigma d}.$$

Si la norme utilisée est la norme définie par

$$\|\xi\| = \sup_{i} |\xi_{i}| \quad \text{pour} \quad \xi = (\xi_{1}, ..., \xi_{n}),$$

on obtient les égalités suivantes:

$$\sum_{\xi \in \mathbf{r}^n} \| \xi \|^{-n\sigma d} = \sum_{(\xi_1, \dots, \xi_n) \in \mathbf{r}^n} \sup_{i} |\xi_i|^{-n\sigma d}$$
$$= \sum_{z \in \mathbf{Z}^{nd}} \sup_{i} |z_1^i \omega_1 + \dots + z_d^i \omega_d|^{-n\sigma d},$$

avec $z=(z_1^1,...,z_d^1,...,z_1^n,...,z_d^n)$, et $(\omega_1,...,\omega_d)$ est une base fondamentale du **Q**-espace vectoriel k. Ainsi

$$\sum_{\xi \in \mathbf{r}^n} \parallel \xi \parallel^{-n\sigma d} \leqslant \mid \omega_{i_0} \mid^{-n\sigma d} \sum_{z \in \mathbf{Z}^{nd}} \sup_{i} \mid z_1^i + \ldots + z_d^i \mid^{-n\sigma d},$$

où ω_{i_0} est un élément de la base fondamentale tel que

$$|\omega_{i_0}| = \sup_{i=1 \text{ à } n} |\omega_i|.$$

On a encore les majorations suivantes:

$$\begin{split} \sum_{\xi \in r^n} \| \xi \|^{-n\sigma d} & \leq \| \omega_{i_0} \|^{-n\sigma d} \sum_{z \in \mathbf{Z}^{nd}} d^{-n\sigma d} \sup_{i} \sup_{j} \| z_{j}^{i} \|^{-n\sigma d} \\ & = \| d\omega_{i_0} \|^{-n\sigma d} \sum_{z \in \mathbf{Z}^{nd}} \sup_{i,j} \| z_{j}^{i} \|^{-n\sigma d} \\ & = \| d\omega_{i_0} \|^{-n\sigma d} \sum_{z \in \mathbf{Z}^{nd}} \| z \|^{-n\sigma d} \,. \end{split}$$

On sait que la série $\sum_{z \in \mathbb{Z}^{nd}} ||z||^{-n\sigma d}$ converge pour $\sigma > 1$.

B) k de caractéristique p

On suppose que k est une extension algébrique de dimension finie du corps $\mathbf{F}_p(T)$. Pour chaque place v de k, k_v est de caractéristique p et si x est un élément de k_v^{\times} , le nombre $|x|_v$ est dans le sous-groupe Γ_0 de \mathbf{R}_+^{\times} engendré par p. La même chose est vraie pour le module $|z|_{\mathbf{A}_k}$ où z est un élément de \mathbf{A}_k^{\times} . L'image de \mathbf{A}_k^{\times} par le morphisme $z \mapsto |z|_{\mathbf{A}_k}$ est un sous-groupe non trivial du groupe Γ_0 . Supposons qu'il soit engendré par un entier $Q = p^N$ avec N entier ≥ 1 .

Choisissons z_1 dans A_k tel que: $|z_1|_{A_k} = Q$. Alors A_k^{\times} est le produit direct de A_k^1 et du sous-groupe noté Γ engendré par z_1 évidemment isomorphe à \mathbb{Z} . D'autre part, on pose

$$\Omega(\phi) = \prod_{v} r_{v}^{\times},$$

on sait que le groupe quotient $\Omega(\phi) \cdot k^{\times} \setminus \mathbf{A}_{k}^{1}$ est fini. C'est le groupe isomorphe au groupe des classes de diviseurs de degré 0. (Voir [6], p. 97).

Soit Y un système de représentants dans \mathbf{A}_k^1 de ce quotient; l'application canonique de $\Gamma \cdot Y$ dans $\Omega(\phi) \cdot k^{\times} \backslash \mathbf{A}_k^{\times}$ est bijective et on a également un isomorphisme

$$k^{\times} \backslash \mathbf{A}_{k}^{\times} \to \Gamma \cdot Y(\Omega(\Phi) \cap k^{\times} \backslash \Omega(\Phi))$$

ou encore

$$k^{\times} \backslash \mathbf{A}_{k}^{\times} \to \Gamma \cdot Y(\mathbf{F}_{q} \backslash \Omega(\phi)),$$

où \mathbf{F}_q est le corps des constantes de k c'est-à-dire le corps fini maximal contenu dans k. Ainsi l'intégrale I_1 se réécrit

$$\begin{split} I_1 &= \sum_{y \in Y} \sum_{m \in \mathbf{Z}} \int_{t \in \mathbf{F}_q \setminus \Omega(\phi)} |z_1^m|_{\mathbf{A}_k}^{n\sigma} \sum_{\xi \in V(k) - \{0\}} |\varphi(\xi z_1^m y t)| d\mu(t) \\ &\leq \sum_{y \in Y} \sum_{m \in \mathbf{Z}} \int_{t \in \Omega(\phi)} |z_1^m|_{\mathbf{A}_k}^{n\sigma} \sum_{\xi \in V(k) - \{0\}} |\varphi(\xi z_1^m y t)| d\mu(t) \,. \end{split}$$

La fonction φ étant quelconque, on se borne à étudier la convergence de

$$\sum_{m \in \mathbb{Z}} \int_{t \in \Omega(\phi)} |z_1^m|_{\mathbf{A}_k}^{n\sigma} \cdot \sum_{\xi \in V(k) - \{0\}} |\phi(\xi z_1^m t)| d\mu(t),$$

ou encore celle de

$$\begin{split} I_2 \; &= \; \sum_{m \in \mathbf{Z}} \mid z_1 \mid_{\mathbf{A}_k}^{mn\sigma} \; \sum_{\xi \in V(k) - \{0\}} \int_{t \in \Omega(\phi)} \mid \phi(\xi z_1^m t) \mid d\mu(t) \\ &= \; \sum_{m \in \mathbf{Z}} \mid z_1 \mid_{\mathbf{A}_k}^{mn\sigma} \; \sum_{\xi \in V(k) - \{0\}} \prod_v \int_{t_v \in r_v^\times} \mid \phi_v(\xi z_{1,v}^m t_v) \mid d\mu_v(t_v) \; , \end{split}$$

où $z_{1,v}$ désigne la composante en la place v de l'idèle z_1 .

Déterminons un idèle z_1 particulier; on le choisit tel que: $z_1 = (z_{1,v})_v$ avec $z_{1,v} = 1$ pour $v \neq v_0$, $z_{1,v_0} = \pi_{v_0}$, v_0 étant une place quelconque de k.

Alors l'intégrale I_2 se réécrit:

$$I_{2} = \sum_{m \in \mathbb{Z}} \left(|\pi_{v_{0}}|^{mn\sigma} \sum_{\xi \in V(k) - \{0\}} \left[\prod_{v \neq v_{0}} J_{v}(\xi) \cdot \int_{t_{v_{0}} \in r_{v_{0}}^{\times}} |\varphi_{v_{0}}(\xi t_{v_{0}} \pi_{v_{0}}^{m})| d\mu_{v_{0}}(t_{v_{0}}) \right] \right),$$

où comme précédemment $J_v(\xi)$ désigne l'intégrale

$$J_{v}(\xi) = \int_{t_{v} \in r_{v}^{\times}} |\varphi_{v}(\xi t_{v})| \cdot d\mu_{v}(t_{v}).$$

On suppose toujours que $\varphi = \prod \varphi_v$ est une fonction décomposable de $\mathcal{S}(V(\mathbf{A}_k))$ et que, pour toute place v, $|\varphi_v| \leq M_v \sigma_v$, où σ_v est la fonction caractéristique de $\pi_v^{-c_v} \cdot r_v^n$. Pour que le produit contenu dans l'expression I_2 soit non nul, il faut que l'élément ξ de $V(k) - \{0\}$ vérifie les conditions suivantes:

$$\|\xi\|_{v} \le \|\pi_{v}^{-c_{v}}\|_{v} \quad \text{pour} \quad v \ne v_{0},$$

 $\|\xi\|_{v_{0}} \le \|\pi_{v_{0}}^{-c_{v_{0}}-m}\|_{v_{0}}.$

Posons

$$L_v = p_v^{-c_v}, \quad L_{v_{0m}} = p_{v_0}^{-(c_{v_0}+m)}, \quad \text{et} \quad L_m = (L_v)_v;$$

alors L_m est un système cohérent de k_v -réseaux de rang 1. (Voir [6], p. 97).

Soit $\Lambda(L_m) = k \cap (\prod_v L_v)$, $\Lambda(L_m)$ est un espace vectoriel sur le corps \mathbf{F}_q des constantes de k dont on note sa dimension $\lambda(L_m)$. (Voir [6], p. 97). Le produit contenu dans I_2 est non nul (pour m fixé) si et seulement si $\xi \in \Lambda(L_m)$.

D'autre part, soit a_m le diviseur associé au système L_m :

$$a_m = \sum_{v \neq v_0} c_v v + (c_{v_0} + m)v_0;$$

on sait que si son degré

$$\deg a_{m} = \sum_{v \neq v_{0}} c_{v} \deg v + (c_{v_{0}} + m) \deg v_{0}$$

est strictement négatif, c'est-à-dire si

$$m < -c_{v_0} - (\deg v_0)^{-1} \cdot \sum_{v \neq v_0} c_v \deg v = M$$

alors $\lambda(L_m) = 0$ (voir [6], p. 100).

Il suffit donc dans l'expression I_2 de sommer pour $m \ge M$ de sorte que

$$I_2 \leqslant (\prod_v M_v m_v) \sum_{m \geqslant M} \mid \pi_{v_0} \mid^{\mathit{mno}} \cdot \sum_{\xi \in \Lambda(L_m)^n - \{0\}} (1) \; .$$

On doit étudier la convergence de

$$\sum_{m \geq M} |\pi_{v_0}|^{mn\sigma} (q^{n\lambda(L_m)} - 1).$$

Sachant que pour m assez grand, le théorème de Riemann-Roch donne l'égalité

$$\lambda(L_m) = \deg a_m - g + 1 \,,$$

où g est le genre de k (voir [6], Cor. 2 du Théorème 2, p. 101), on est ramené à la convergence de

$$\sum_{m \geqslant M} q^{-mn\sigma \deg v_0} q^{nm \deg v_0} = \sum_{m \geqslant M} q^{\deg v_0(1-\sigma)mn}.$$

Cette série converge pour $\sigma > 1$.

Le résultat de la proposition 6 se déduit alors de:

Proposition 7. On a l'égalité

$$E(\varphi, x, \omega) = \int_{k^{\times} \backslash \mathbf{A}_{k}^{\times}} \omega(\det tx) \cdot \sum_{\xi \in V(k) - \{0\}} \varphi(\xi tx) d\mu(t)$$

pour ω quasi-caractère d'exposant $\sigma > 1$.

Démonstration. On construit l'application suivante:

$$P(k)\backslash G(k) \times k^{\times} \to V(k) - \{0\}$$
$$(\gamma, u) \mapsto eu \gamma_0$$

où γ_0 est une matrice dans la classe de γ dont le premier élément non nul sur la dernière ligne est égal à 1.

Puisque cette application est bijective, on peut écrire la série absolument convergente $\sum_{\xi \in V(k) - \{0\}} \varphi(\xi t x)$ comme

$$\sum_{u \in k^{\times}} \sum_{\gamma \in P(k) \backslash G(k)} \varphi \left(eu \gamma_0 tx \right),$$

et par suite

$$\int_{k^{\times}\backslash \mathbf{A}_{k}^{\times}} \omega(\det tx) \cdot \sum_{\xi \in V(k) - \{0\}} \varphi(\xi tx) d\mu(t)$$

$$= \int_{k^{\times}\backslash \mathbf{A}_{k}^{\times}} \sum_{u \in k^{\times}} \sum_{\gamma \in P(k)\backslash G(k)} \omega(\det tx) \varphi(eu\gamma_{0}tx) d\mu(t)$$

$$= \int_{\mathbf{A}_{k}^{\times}} \sum_{\gamma \in P(k)\backslash G(k)} \omega(\det tx) \varphi(\det \gamma_{0} x) d\mu(t)$$

$$= \sum_{\gamma \in P(k)\backslash G(k)} \int_{\mathbf{A}_{k}^{\times}} \omega(\det tx) \varphi(\det \gamma_{0} x) d\mu(t)$$

puisqu'on a ici convergence absolue. Mais l'intégrale

$$M(\varphi, \gamma_0 x, \omega) = \int_{\mathbf{A}_k^{\times}} \varphi(\operatorname{et} \gamma_0 x) \omega(\operatorname{det} tx) d\mu(t)$$

ne dépend pas du représentant choisi dans la classe γ de $P(k)\backslash G(k)$, ainsi on a bien

$$\int_{k^{\times}\backslash \mathbf{A}_{k}^{\times}} \omega(\det tx) \cdot \sum_{\xi \in V(k) - \{0\}} \varphi(\xi tx) d\mu(t)$$

$$= \sum_{\gamma \in P(k)\backslash G(k)} \int_{\mathbf{A}_{k}^{\times}} \omega(\det tx) \varphi(\det \gamma x) d\mu(t)$$

$$= E(\varphi, x, \omega).$$

Chapitre IV

LE PROLONGEMENT ANALYTIQUE DES SÉRIES D'EISENSTEIN

Dans la suite, k désigne un corps global, E une extension de dimension n sur k et V(k) l'espace vectoriel sur k sous-jacent à E.

1. La formule de Poisson

Soit χ un caractère de \mathbf{A}_k non trivial, trivial sur k et soit (x, y) la formule bilinéaire symétrique sur $V(\mathbf{A}_k)$ non dégénérée définie par

$$(x, y) = Tr(xy),$$

où Tr désigne la trace absolue $Tr_{E/k}$; alors on peut identifier $V(\mathbf{A}_k)$ averson dual topologique par l'isomorphisme qui a un élément x de $V(\mathbf{A}_k)$ associe le caractère $\chi(x, y)$ de $V(\mathbf{A}_k)$.

Soit α la mesure de Tamagawa de \mathbf{A}_E pour laquelle le quotient $E \setminus \mathbf{A}$ est de mesure 1, avec l'identification précédente; la transformée de Fourie d'une fonction φ de $\mathscr{S}(V(\mathbf{A}_k))$ est définie par

$$\widehat{\varphi}(y) = \int_{V(\mathbf{A}_k)} \varphi(x) \, \overline{\chi(x, y)} \, d\alpha(x), \quad \text{pour} \quad y \in V(\mathbf{A}_k),$$

et la formule de Poisson pour le sous-groupe discret à quotient compacV(k) dans $V(\mathbf{A}_k)$ s'écrit

$$\sum_{x \in V(k)} \varphi(x) = \sum_{y \in V(k)} \widehat{\varphi}(y) \quad \text{pour} \quad \varphi \in \mathcal{S}(V(\mathbf{A}_k)),$$

l'orthogonal de V(k) s'identifiant à V(k).