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102 F. WIELONSKY

ce qui prouve que

fi_1(/£(c)) Mv_1(c))

et démontre la proposition.

Chapitre III

Définition et convergence des séries d'Eisenstein

Dans tout ce chapitre, k désignera un corps global et Ak les adèles

de k.

1. Mesures sur Ak et Ak

On s'intéresse d'abord aux places infinies de k (dans le cas où
l'extension k est un corps de nombres). Sur le corps R, on choisit la mesure
de Lebesgue usuelle notée dx et sur le groupe multiplicatif Rx, on choisit

dx
la mesure de Haar Sur le corps C, on choisit la mesure

I X I

\dz A dz\ 2dx dy

et sur le groupe multiplicatif Cx, on prend comme mesure la mesure de

Haar:

| z |
~ 2

| dz A dz |

Pour chaque place finie v de /c, on note uv une mesure de Haar sur kv

complété de k en cette place. Soit rv le sous-anneau compact maximal de kv

on suppose que pour presque tout v, le réel positif mv av(rv) est égal à 1

Alors sur le corps global Afc, il existe une unique mesure notée a qu
coïncide avec la mesure produit na„ sur chacun des sous-groupes ouvert;

EK-EK de Ak où P est un ensemble fini de places de k contenant ai
veP v$P

moins les places infinies. Alors a est une mesure de Haar sur le corps Ak

dOLv(x)
Sur le groupe multiplicatif k*, on sait que la mesure —-— est une mesure

1*1«,

de Haar. (| x \v désignant le module de x e kv).
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Soit nv une uniformisante de kv ; on choisira comme mesure de Haar

sur k *, la mesure d\iv définie par

\nv\v d(*v(x)
d\Lv(x) ]

I

de sorte que l'on a le :

Lemme. Pour toute place finie v,

1 Ixl

dpv(x) mv

Démonstration.

m,

I

|*|„=1

da.v(x)E
|x|v^l " 0

1

dav{x)

dav(x) 1 -
|*|„=1

Wv=KI»
-1

doLv(x)

n»i ^ \v r dav(x)

\ Kv \v - 1 |X|V=1 I X I,
dpv{x).

Mv?i

Alors on définit la mesure de Haar p sur Akx comme l'unique mesure

coïncidant avec la mesure produit Yi th sur chacun des sous-groupes

n*» -r[r» •

veP v$P

2. Séries d'Eisenstein

Dans la suite, G désignera le groupe algébrique GL„; V un espace
vectoriel de dimension n, e — (0,0, 1) le dernier élément de la base

canonique de V et SP(V(Ak)) l'espace des fonctions de Schwartz-Bruhat
définies sur le vectoriel V(Ak) de la manière suivante:

On dira d'abord qu'une fonction / à valeurs complexes définie sur le
vectoriel V(Ak) est décomposable si elle s'écrit comme un produit

/m n u*v)

Pour les places infinies éventuelles, on demande que fv soit dans £f(V(kv))
1 espace des fonctions Cx à valeurs complexes à décroissance rapide, i.e.
quel que soit a e N"" (avec a1 si kvR et 2 si kB C) et quel
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que soit iV > 1 il existe C > 0 tel que

i%)i < c(i+nur*
quel que soit tve kv.
Pour les places finies v, on demande que fv soit dans l'espace des

fonctions à valeurs complexes localement constantes et à support compact. On

notera également cet espace Sf(V(kv)). Enfin pour presque toute place finie v,

fv est la fonction caractéristique du réseau r".
Le C-espace vectoriel £f(V(Ak)) est alors l'espace des combinaisons linéaires

finies de fonctions décomposables telles que fv e £f{V(kv)) pour toute place v.

Proposition 5. Soit x une matrice de G(Ak), cp une fonction de

Sf(V(Ak)), co un quasi-caractère de Ak (i.e. un morphisme continu de

Ak dans Cx trivial sur kx a l'unique réel tel que

| co | coCT où coct(0 - | 11 aAk ;

alors Tintégrale

M(cp, x, co) cp(et x)co(det tx)d\x(t)
Afcx

converge pour a réel plus grand que l/n.

Démonstration. On peut supposer que la matrice x est la matrice unité

et que la fonction cp est décomposable :

•P-Ili. <P0e^(F(/O)
V

et (p„ est la fonction caractéristique de r" pour presque toute place finie
Soit Kv le support de la fonction cp^, il existe un entier cv tel que

K œ n~Cv -rnxvl>— *kß ' V '

où rj désigne le r^-module engendré dans V{kv) par la base canonique.

Soit gv la fonction caractéristique de n~Cv • r" et Mv le réel positif défini pg.'

Mv sup | cp,(x) | ;

xeV(kv)

on a l'égalité suivante :

I I < Mv • Gv(x).
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D'autre part

ü0(et„) • 11J r tp \ 7 dy,

car

et„ (0,0, tv)envc"-ri

si et seulement si

Mais

t„ I.. ^ I nv

\tv\7 d\iv(tu)£
Wv 1^1^

Kir* d\iv{tv).

Posons 4, I rc, |
~1 > 1 ; on obtient :

00

41,(0 Z
- \tv\v=l r» 0

mv — lorsque a > 0.

Les réels Mv et mv sont presque toujours égaux à 1 et l'entier cv presque

toujours nul, donc le produit des intégrales

I <Pv(etv) I • K I r d\iv(tv)

converge,aux places finies est convergent lorsque le produit J~[ (1 -

c'est-à-dire quand na > 1 ou encore a > 1/n.

Aux places infinies l'intégrale converge si elle converge à l'origine
autrement dit si a > 0. La proposition 5 est démontrée.

Soit P le sous-groupe de G des matrices qui s'écrivent

où a est une matrice de GL„_1? b est un vecteur colonne ayant (n— 1)

composantes, d est un élément de l'anneau de base tel que d • det a soit
inversible dans cet anneau; on définit les séries d'Eisenstein de la manière
suivante :
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Proposition 6. Pour x e G(Afc), co un quasi-caractère de Afcx tel que

I CO I coCT, creR,

la série

£(cp, x, co) £ M((p, yx, co)

yeP(k)\G(k)

converge pour er > 1; on l'appelle la série d'Eisenstein associée à la fonction
<p de ^(K(A,)).

Enonçons d'abord le résultat suivant :

Lemme. L'intégrale

h \t\Z- I I <p(Çta) I dp(t)
kx\Ak ÇeF(fc)-{0}

est convergente si a > 1.

Démonstration. Comme la fonction cp de ^(P(Afc)) est quelconque, on

peut supposer x 1.

A) k de caractéristique 0.

Soit Pœ l'ensemble des places infinies de k, on pose:

tyPJ r? •

VePœ V*PO0

On sait que le groupe ^(P^) • kx\A£ est fini, isomorphe au groupe Ck

des classes d'idéaux de k. Soit Y un système de représentants dans hxk

du quotient • kx\A£ ; l'application canonique de 7 • Q(P00) dar s

/cx\Afcx est surjective.

Supposons qu'un élément a de /ex\Afcx s'écrive de deux manières distincte :

a jqaq y2co2 >

avec

y1,y2eY et ccq, co2 g Q(PJ

Alors il existe a dans kx tel que

ay1cd1 y2co2

ce qui entraîne l'égalité de y1 et y2 car ce sont des représentants d i

quotient kx • Q(P00)\Afcx Ainsi
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c'est-à-dire aerx, r désignant l'anneau des entiers de k. On a donc un

isomorphisme

Y-r*\Q(PJ^k*\Ak*

L'intégrale Ix se réécrit

h I
< z

ysY

\yt\Z- I \^yt)\dn(t)
terx\Q(P00) ÇeV(k)-{0}

fytIZ- Z \^yt)idii(t).
teQiP^) &V(k)-{0}

La fonction cp étant quelconque, on se borne à étudier la convergence de

feQ(F00) $eV(k)-{0}

ou encore celle de

;2 Z I !<pßf)HflX:4i(f
ÇgF(/c)-{0} J

ce qui se réécrit

d)

avec

et

^2 Z
ÇeK(fc)-{0}

Atë) -
r«,efcf.

n h® - n
L "eP Vi

J&) [
x

I <or(çf, i | • 4UU,
J r„erf.

I h |tJsi R,
I t,„ |2 si C

Comme dans la démonstration de la proposition 2, on note Kv le supportde la fonction cp„, cvl'entiertel que

K„ c n;c»
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De plus, on note av la fonction caractéristique de nvCv*r" et Mv le réel

positif défini par

Mv sup | <p„(x) |

xeV{kv)

(l'entier cv est nul et le réel Mv vaut 1 pour presque toutes les places

finies v). Alors

(2) n jv < n °v&vWv{tv)

Donnons une condition sur pour qu'en toute place finie v, e kv Cv • r".

Soit / n I nv\vc° e N <= r (r anneaux des entiers de /c), alors
V$P

ce

I f\v \nv\ï;
on a les équivalences successives suivantes :

%tve n~c* r" <=> | Ç f.< 1 n„<s> \Ç|„ < | \~1 «» | |„ < 1

et on en déduit que sera dans n~Cvr" pour tout v fini si et seulement

si g f~lrn. Si £, $ f~l rn, l'une au moins des intégrales JV{Q est nulle et il

suffit donc, dans la définition de /2, de sommer sur les f~lrn. On en

déduit alors de (1) et (2) la majoration

h < e n ij® n mv
^ef~lrn

d\Lv(tv) >

puis

i2 < n mA i n
ir-

OÙ mv est le réel positif défini en III.l.
Mais les fonctions cp,, où v est une place infinie sont à décroissance rapi :e

donc :

n m « n c,,i a+11^11 : d\iv(tv),
tvekv

où oc 1 si kv R, a 2 si kv C

On fait le changement de variables suivant :
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si v est une place réelle:

si v est une place complexe :

alors | uv \K H U • I tv|tj>de sorte que

n iv&^k iln Qi

K Il

K= Il Ç Il1 • tv

(l + \u±)-N-\u0\Zd\iv(K),

où d désigne la dimension de k sur Q.

_ Si kv R, l'intégrale correspondante dans le produit se réécrit :

a+wr"-j*rî^r
teR* IM

intégrale qui converge à l'infini si N est choisi assez grand et en 0 si

a > 0.

Si kv C, l'intégrale se réécrit :

(l + |z|2) N ' | z |
2na 2 dx dy 2

4k

(1 + p2) N ' p2nc 1dp i

e

(1 + p2)~N • p2na~1 dp

intégrale qui converge à l'infini si N est choisi assez grand et en 0 si

2/7(7—1 > — 1 c'est-à-dire si a > 0.

Il reste à montrer la convergence de la série

E i % il ~mdZ il /M il ~n°d
i / z n s il "M

Çe/_1rn Çer" Çern

on est donc ramené à la convergence de

Z nrnad.
Çer"

Si la norme utilisée est la norme définie par

Il Ç II « supiy pour é, (Çl9.

on obtient les égalités suivantes :

Z IU II ""ad Z sup I I

(Çi » • ••, Çn)er" i

Z sup I z'i °>i + - + I

zeZnd i
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avec z (zJ,z\,..., z\,znd\ et (aq,..., œd) est une base fondamentale
du Q-espace vectoriel k. Ainsi

Z II U "nod < 1 ©J ~n°d I sup I zi + - +i ~mi
'

Çer" zeZ"d i

où (ùio est un élément de la base fondamentale tel que

| COJ sup I <öf I

i 1 à n

On a encore les majorations suivantes:

X il 4 il < I ®io I
""ad Z sup sup I z'j I

~m"i
zeZnd i j

| daj-wi Z suplzjl"^
zeZnd i, j

I rfco;o I X II 2 II ""od
•

zeZnd

On sait que la série £ || z ||
~ncd

converge pour a > 1.
zeZnd

B) k de caractéristique p

On suppose que k est une extension algébrique de dimension finie du

corps Fp(T). Pour chaque place v de k, kv est de caractéristique p et si x
est un élément de kx, le nombre \x\v est dans le sous-groupe r0 de

R x engendré par p. La même chose est vraie pour le module | z |Ak

où z est un élément de Ak L'image de Ak par le morphisme z i— | z |Alc

est un sous-groupe non trivial du groupe r0. Supposons qu'il soit engendré

par un entier Q pN avec N entier ^ 1.

Choisissons zt dans Ak tel que: | zx |Ak Q. Alors Ak est le produit
direct de et du sous-groupe noté F engendré par zx évidemment

isomorphe à Z. D'autre part, on pose

W) FK >

v

on sait que le groupe quotient Q(c|)) • kx\Aj, est fini. C'est le groupe isomorphe
au groupe des classes de diviseurs de degré 0. (Voir [6], p. 97).

Soit Y un système de représentants dans Ak de ce quotient; l'application
canonique de T • Y dans Q,(<\>) - kx\Ak est bijective et on a également un

isomorphisme

kx\Ax -> L - Y(Q,(<\>)nkx\Q{<bj)
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ou encore

kx\A* -+r-Y(Fq\Q(<b))t

où ¥q est le corps des constantes de k c'est-à-dire le corps fini maximal

contenu dans k. Ainsi l'intégrale 11 se réécrit

1*i1aL I I (pfëzi3>*) I d\x(t)
%eV(k)-{0}

£ | cpfcz^yt) | d[i{t).
m-{o}

La fonction cp étant quelconque, on se borne à étudier la convergence de

yeY meZ
%

«IIyeY meZ t

teFq\n(4>)

I - m | na
I Z 1 IAk

(0)

ImeZ
'1 lAk % i cp(^T01 dm,

îeQ(<|>) $eV(k)-{0}

ou encore celle de

h= Z I zi
meZ

| mna X"1
I Ak Zu

^eE(fc)-{0} J iefî(<|>)

Z l zi mna
Ak z n

cpfëz^) I dp(t)

où z1?i; désigne la composante en la place v de Fidèle zx.

Déterminons un idèle zx particulier; on le choisit tel que: zx

avec z1>4 1 pour v =£ v0, zUvo nVo, v0 étant une place quelconque de k.

Alors l'intégrale I2 se réécrit :

h Z l*.
meZ

I mna X^
'^o I Zu

^eV(k)-{0}
El ^(0'

vfv0
I I dnjtj

où comme précédemment J„(^) désigne l'intégrale

I <Pv&v) I • d\iv(tv)

On suppose toujours que cp Y[ est une fonction décomposable de

f{ L(Ak)) et que, pour toute place v, | cp„ | ^ Mvov, où ay est la fonction
caractéristique de n~Cv • r". Pour que le produit contenu dans l'expression
sou non nul, il faut que l'élément E, de V(k) — {0} vérifie les conditions
suivantes :
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II £ IL < I n;Cv |„ pour +
II £ IL < I nvoC"°~mIvoPosons

L VZ", L0,m p;> + m>, et Lm (L„)„ ;

alors Lm est un système cohérent de /cy-réseaux de rang 1. (Voir [6],
p. 97).

Soit A(LJ et k n {LJ, A(LJ est un espace vectoriel sur le corps ¥q
V

des constantes de k dont on note sa dimension X(Lm). (Voir [6], p. 97).

Le produit contenu dans I2 est non nul (pour m fixé) si et seulement si

S e A(LJ.
D'autre part, soit am le diviseur associé au système Lm :

amE cv v ++ ;

vfvo

on sait que si son degré

deg amy cvdegv + (c„0 + m)deg v0
V + VO

est strictement négatif, c'est-à-dire si

m< cvo-(deg Vq)~• £ deg
vfv 0

alors HLm) 0 (voir [6], p. 100).

Il suffit donc dans l'expression I2 de sommer pour m ^ M de sorte que

I2Mvmv)XKo n°- X (!)•
v m^M ^eA(Lm)n — {0}

On doit étudier la convergence de

I \nvor°(q"^1).

Sachant que pour m assez grand, le théorème de Riemann-Roch donne

l'égalité

X(Lm) deg am - g + 1

où g est le genre de k (voir [6], Cor. 2 du Théorème 2, p. 101), on est

ramené à la convergence de

y q
— mna deg vo qnm deg vo _ ^ ^degt>o(l ~a)mn

m ^ M m ^ M
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Cette série converge pour a > 1.

Le résultat de la proposition 6 se déduit alors de :

Proposition 7. On a l'égalité

£(cp, x, co) co(det fx) • Y cp(é,fx)dp(f)
J K'*\AfcX (fc) — {0}

pour co quasi-caractère d'exposant a > 1.

Démonstration. On construit l'application suivante :

P(k)\G(k) x /cx -> F(fc) - {0}

(y, u) h-» ew y0

où Yo est une matrice dans la classe de y dont le premier élément non
nul sur la dernière ligne est égal à 1.

Puisque cette application est bijective, on peut écrire la série absolument

convergente Y comme
Z,eV(k)-{ 0}

X X 9 (<?" To tx),
.uefcx yeP(k)\G(k)

et par suite

co(det tx) • Y cp(é,fx)dp(f)
fc*\AfcX ÇeF(/c)-{0}

x
X X ®(det tx)

kx\Ak uekx yeP(k)\G(k)

Y co(det fx) cp(et y0 x)d\i(t)
A* yeP(k)\G(k)

x
yeP(k)\G(k) c

co(det tx) cp(et y0 x)dp(t)

puisqu'on a ici convergence absolue. Mais l'intégrale

M(<p, y0x, co) <p(et y0 x)co(det tx)dp(t)

ne dépend pas du représentant choisi dans la classe y de ainsi
on a bien
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co(det tx) • ]T q>(tyx)d\x(t)
k*\A? &V(k)-{0}

Z
yeP(k)\G(k)

co(det tx) cp(et yx)d\i(t)
Ak

E{cp, x, co).

Chapitre IV

Le prolongement analytique des séries d'Eisenstein

Dans la suite, k désigne un corps global, E une extension de dimension

n sur k et V(k) l'espace vectoriel sur k sous-jacent à E.

1. La formule de Poisson

Soit x un caractère de Ak non trivial, trivial sur k et soit (x, y) la

formule bilinéaire symétrique sur V(Ak) non dégénérée définie par

(x, y)

où Tr désigne la trace absolue TrE/k; alors on peut identifier V(Ak) ave

son dual topologique par l'isomorphisme qui a un élément x de V{A-,

associe le caractère %(x, y) de V(Ak).

Soit a la mesure de Tamagawa de AE pour laquelle le quotient £\A
est de mesure 1, avec l'identification précédente; la transformée de Fourie
d'une fonction (p de y(V(Ak)) est définie par

<p(y) <p(x) x(x, y) da(x),pour y e V(Ak),
y (Ak)

et la formule de Poisson pour le sous-groupe discret à quotient compac
V(k) dans V(Ak) s'écrit

Z <PW Z (p(y) pour (pe£f(V(Ak)),
xeV(k) yeV(k)

l'orthogonal de V(k) s'identifiant à V(k).
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