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GL,(K)), donc surjective, et il existe donc y € B(K) tel que xy = 1. La défi-
nition de T(K) montre que T est un sous-groupe algébrique commutatif
de GL,,.

Prenons en particulier pour K une extension algébriquement close k de k;

lalgébre B(k) est diagonalisable (cf. [3] chap. V, p. 29, Prop. 2); elle est
donc isomorphe sur k a I'algébre produit k", par conséquent, le groupe

T(—IE) est isomorphe a (E*)" ce qui démontre la
PROPOSITION 1. Le groupe T est un tore maximal de GL(n) défini
sur k (et donc un sous-groupe de Cartan) (cf. [1], § 8.5, p. 205 et 316).

Remarque. Dans le cas ou E est un corps de nombres sur Q, 'homo-
morphisme m donne bien un plongement de E dans une algébre B(Q)
de matrices rationnelles.

Chapitre 11

CLASSES D'IDEAUX ET EXTENSIONS ALGEBRIQUES

On suppose maintenant que k est un corps de nombres sur Q et que E
est une extension de k.

Si v (resp. w) est une place de k (resp. de E), on note k, (resp. E,) le
complété de k (resp. de E) en cette place et on pose:

F, =[] E,.

wiv

On note p,, 'application
A ® ©; - Zho;

de E ® k, dans E,, (elle n’est pas injective), et si les places de E au-dessus
de la place v de k sont les places Wi, .., Wy, ON note

Papplication telle que

H(x) = (ul(x)a ey “’s(x)) :
C'est un isomorphisme de k,-algebres (cf. [6], Th. 4, p. 56).
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Soit v le morphisme tel que I'on ait le diagramme commutatif

T

E ® k, — B(k,)

Soit r 'anneau des entiers de k et r, ’adhérence de r dans k,; on note
en outre R l'anneau des entiers de E et R, son adhérence dans E,.
(Cest le sous-anneau compact maximal de E, (cf. [6], Cor. 1, p. &3)).

Enfin, on pose

D, = []R,;
wlv

c’est le sous-anneau compact maximal de l'algebre F,.

Remarquons que R ® r, est le sous-anneau compact maximal de E & k,.

En effet, puisque R est de type fini sur r, Panneau R @ r, est compact,

S

et son image par ; est dense dans R, (car R est dense dans R}
donc lui est €gale; on obtient W R®r,) = D,,. C.QFL.

Posons M(R®r,) = C,;

on a donc un diagramme d’isomorphismes de r,-algebres et de sous-anneau
compacts maximaux :

R®r, . C,

On pose enfin
B(r,) = B(k,) n M,(r,),
G, = Loy, < EQ k,;

G, est un sous r,-module de E @ k,, et B(r,) est un sous-anneau de C,. |
car B(r,) est compact.
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Remarque. On a n(G,) = B(r,) si et seulement si m(w;) € M,(r,) pour
| < i< n; autrement dit si les coefficients de la table de multiplication

O“)ho‘)j = Zagﬁ)l
sont dans r,; en effet, on a
_ h
m(w,) = (aij)l <i,j<n-

D’autre part, notons o* la base duale de o (cf. [1], p. 451); on a
B(r,) = n(G,) si et seulement si m(w})e M,(r,) pour 1 <i<n Il s’ensuit
que G, est un sous-anneau compact de E ® k, des que n(G,) < B(r,). On a
alors les résultats suivants:

PROPOSITION 2. 1) Pour presque toute place v, ona
nG,) = B(r,).

2) Pour presque toute place v, ona
G,=RQr,.

Démonstration. Pour 1) on utilise la remarque ci-dessus. Pour 2) on voit
que w(G,) = D, en utilisant [6] Th. 4, p. 57. On a donc presque toujours
le diagramme d’isomorphismes

G, = RQr,

D

v

Remarque. Supposons l'anneau r principal, alors le r-module R admet
une base. En effet, un module sans torsion de type fini sur un anneau
principal est un module libre de rang fini (cf. [3], ch. VIIL, p. 19, Cor. 2).

Si ® est une telle base, c’est évidemment une base de E sur k. La
table de multiplication de cette base est alors a coefficients dans r, on a donc:

T(R) < B(r) = B(k) n M (r)
€t par conséquent

C, = ©R®r,) = B(r,),
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donc C, = B(r,); d’autre part
R®r, = Zor, = G,.

Il s’ensuit donc que lorsque 'anneau r est principal, et que 'on prend pour ®
une base de R sur r, on a a chaque place v sans exception le diagramme (*). |
Ecrivons v(B(r,)) = [] O,,; alors O,, est un sous-anneau de R,,. Soit

w|v

S T'ensemble des places de k telles que B(r,) # C,. On a O, = R, dés
que w ne divise aucune place de S. Posons:

O=n(O,nE);

alors O est un ordre de E et O est dense dans O,,.
On pose

T(r,) = B(r,)” = {xeB(r,)|detxer,}

Le groupe T(r,) est un sous-groupe compact de T(k,); il est maximal des
que v ¢ S; on a un isomorphisme

Ter,) > [0 .

w|v

Posons
TAH =]][T(r,) e 0~ =TJ]0);

Notons A (resp. Ag) l'anneau des adeles de k (resp. de E) et T(A) le
groupe des points de T a valeurs dans A. Avec ces notations, le résultat
suivant est immediat:

PROPOSITION 3. L’application v induit un isomorphisme
T(\T(A)/T(H) - E*\A; /O ™ .

Si § = @, par exemple dans le cas ou ® est une base de R sur r |
onaQ, = R, et |

0" =[]Ry.

En définitive, on obtient le résultat suivant. ; ’

Supposons G, = R ® r, pour tout v. Cette condition est vérifiée si ® est | .
une base de R sur r, ce qui est toujours possible si r est principal.
Si X est une partie de k, notons [ X], son adhérence dans k,,.
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Pour x € T(A), soit I(x) le réseau de k" tel que
[1(x)], = rix, pour toute place v finie .
Pour c € Af , soit Ig(c) I'idéal fractionnaire de E tel que
[Igc)],, = cwR,, pour toute place w finie .

Enfin, pour tout idéal fractionnaire I de E on note Q™ !(I) son image par
lisomorphisme Q™.

PROPOSITION 4. Avec les notations précédentes, si ® est une base de R
sur 1, le diagramme suivant est commutatif :

v~ 1

Ag T(A)
Ie I
Idéaux de E ~ Réseaux de k®

Démonstration. 1°) Soit z, € (EQk,)™. On a
Q7 Yz,G,) = Q' ou, (G,)
et puisque G, = Q(ry), il vient Q" Yz,,G,) = Q"' ou, Q") et donc
(1) Q Y z,G) = r" - n(z,) .

2°) Soit (cw)wlveHEfj. Si G,=R®r,, ona pn (IIR,) = G, et donc
w|v

(2) n((ew),,) s G, = p (e, R,).

3°) Soitce A . Ona
WLIe(0)],) = Me,R, .

Dautre part la relation (2) implique Ilc, R, = Wu~*e),G,); on a donc
[0, = 1 (e), - G, .

Par la relation (1), il vient

[Q7 5], = Q7 [Ux)],) = Q™ Hu"Y(¢)G,)

=rymep o), = v o),
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ce qui prouve que

QY1) = I{v-i(e)

et démontre la proposition.

Chapitre 111

DEFINITION ET CONVERGENCE DES SERIES D’EISENSTEIN

Dans tout ce chapitre, k désignera un corps global et A, les adéles
de k.

1. MESURES SUR A, ET A}

On s’intéresse d’abord aux places infinies de k (dans le cas ou lex-
tension k est un corps de nombres). Sur le corps R, on choisit la mesure
de Lebesgue usuelle notée dx et sur le groupe multiplicatif R, on choisit

X .
la mesure de Haar l—— Sur le corps C, on choisit la mesure
X

|dz A\ dz| = 2dx dy

et sur le groupe multiplicatif C*, on prend comme mesure la mesure de
Haar:

12|72 |dz A d7].

Pour chaque place finie v de k, on note o, une mesure de Haar sur k,
complété de k en cette place. Soit r, le sous-anneau compact maximal de k,
on suppose que pour presque tout v, le réel positif m, = a,(r,) est égal a 1
Alors sur le corps global A,, il existe une unique mesure notée o qu
coincide avec la mesure produit ITa, sur chacun des sous-groupes ouvert:

[[k,-[]r, de A, ou P est un ensemble fini de places de k contenant at
veP véP '
moins les places infinies. Alors a est une mesure de Haar sur le corps A,

do,(x)
est une mesure

Sur le groupe multiplicatif k, , on sait que la mesure x|
X v

de Haar. (| x |, désignant le module de x € k,).
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