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On termine ce travail en montrant comment on peut retrouver la formule
classique de Hecke a partir de la formule adélique. Pour cela, on construit
une projection du quotient G(Q)Z(A)\G(A) dans le quotient Z(R)G(Z)\G(R)
en utilisant la décomposition bien connue du groupe G(A):

G(A) = G(Q)-G*(R)- G(Z).

Pour obtenir la formule classique, on calcule quelle est I'image par cette
projection du domaine d’intégration T(Q)Z(A)\T(A) qui apparait dans la
formule généralisée. En particulier, cela fait intervenir des résultats obtenus
dans le chapitre II.

Cet article reproduit une thése de 3° cycle effectuée sous la direction
de Gilles Lachaud. Qu’il trouve ici exprimée ma reconnaissance pour l'aide
quil m’a apportée.

Chapitre 1

PLONGEMENT D’'UN CORPS DE NOMBRES DANS UNE ALGEBRE
DE MATRICES RATIONNELLES

Dans ce qui suit, k désigne un corps global (A-field dans la terminologie
de [6] p. 43) et E une algebre étale sur k ([3] chap. V, p. 28, déf. 1)

Exemple. On prend pour k le corps Q des nombres rationnels et pour E
une extension de dimension finie de Q; alors E est une extension seéparable
de Q et donc une algébre étale ([3] chap. V, p. 35, déf. 1).

On note E, ., I'espace vectoriel sous-jacent a E; et on pose:

n=dmékE,, =[E:k].
Si x € E, on note u, endomorphisme k-linéaire de E, ... défini par
uy) = xy  (yeE),
de telle sorte que
Uevy = Uy + Uy Uy = uou,, x,yekE;

autrement dit, 'application u: E — End(E,..) définie par u: x s u, est un
homomorphisme de k-algébres.
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Soit ® = [w,, .., ®,] une base du k-espace vectoriel E, .. Cette base
définit un isomorphisme Q de k" sur E défini par

Qxy, X)) = X0, + ... + X,0,.
On pose, pour x € E,
x) = Q ' Q,
de telle sorte que
n: E - M, (k)
est un homomorphisme de k-algébres. On pose
WE) = B(k);

ainsi B(k) est une sous-algébre commutative et unifere de M,(k), de dimension
n sur k. Comme sous-espace vectoriel de dimension n de M,(k), algebre
B(k) est définie par N = n(n—1) équations linéaires a coeflicients dans k:

f1x) = 0., falx) = 0;

on notera F 'application linéaire de M (k) dans k¥ de coordonnées f, ..., [y
de sorte que B(k) est égal au noyau de F.
Pour toute extension K de k, on pose

B(K) = {xe M,(K)| F(x) = 0};

c’est une sous-algebre de M, (K) qui admet n(w) = [m(®,), ..., ©(®,)] pour bast.
Pour x ® ALe E @, K, on pose:

(x®A) = An(x);
I'application 7 ainsi prolongée est K-linéaire et définit un isomorphisme c:
K-algebres:

n: E ®, K - B(K)

(en effet, ici encore, © transforme une base de E @ K en une base de B(K .
On pose

T(K) = B(K) n GL,(K),

le groupe T(K) est donc le groupe des éléments inversibles de B(K); e
effet si x € B(K)* alors x € GL,(K).
Réciproquement, si x € B(K) a un déterminant non nul, I'applicatio:i

i

y xy de B(K) est K-linéaire et injective (puisque x a un inverse dan; U
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GL,(K)), donc surjective, et il existe donc y € B(K) tel que xy = 1. La défi-
nition de T(K) montre que T est un sous-groupe algébrique commutatif
de GL,,.

Prenons en particulier pour K une extension algébriquement close k de k;

lalgébre B(k) est diagonalisable (cf. [3] chap. V, p. 29, Prop. 2); elle est
donc isomorphe sur k a I'algébre produit k", par conséquent, le groupe

T(—IE) est isomorphe a (E*)" ce qui démontre la
PROPOSITION 1. Le groupe T est un tore maximal de GL(n) défini
sur k (et donc un sous-groupe de Cartan) (cf. [1], § 8.5, p. 205 et 316).

Remarque. Dans le cas ou E est un corps de nombres sur Q, 'homo-
morphisme m donne bien un plongement de E dans une algébre B(Q)
de matrices rationnelles.

Chapitre 11

CLASSES D'IDEAUX ET EXTENSIONS ALGEBRIQUES

On suppose maintenant que k est un corps de nombres sur Q et que E
est une extension de k.

Si v (resp. w) est une place de k (resp. de E), on note k, (resp. E,) le
complété de k (resp. de E) en cette place et on pose:

F, =[] E,.

wiv

On note p,, 'application
A ® ©; - Zho;

de E ® k, dans E,, (elle n’est pas injective), et si les places de E au-dessus
de la place v de k sont les places Wi, .., Wy, ON note

Papplication telle que

H(x) = (ul(x)a ey “’s(x)) :
C'est un isomorphisme de k,-algebres (cf. [6], Th. 4, p. 56).
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