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On termine ce travail en montrant comment on peut retrouver la formule

classique de Hecke à partir de la formule adélique. Pour cela, on construit

une projection du quotient G(Q)Z(A)\G(A) dans le quotient Z(R)G(Z)\G(R)
en utilisant la décomposition bien connue du groupe G(A) :

G(A) - G(Q) • G + (R) • G(Z).

Pour obtenir la formule classique, on calcule quelle est l'image par cette

projection du domaine d'intégration T(Q)Z(A)\7YA) qui apparaît dans la
formule généralisée. En particulier, cela fait intervenir des résultats obtenus
dans le chapitre II.

Cet article reproduit une thèse de 3e cycle effectuée sous la direction
de Gilles Lachaud. Qu'il trouve ici exprimée ma reconnaissance pour l'aide
qu'il m'a apportée.

Chapitre î

Plongement d'un corps de nombres dans une algèbre
DE MATRICES RATIONNELLES

Dans ce qui suit, kdésigne un corps global (A-field dans la terminologie
de [6] p. 43) et £ une algèbre étale sur k ([3] chap. V, p. 28, déf. 1).

Exemple. On prend pour k le corps Q des nombres rationnels et pour E
une extension de dimension finie de Q; alors E est une extension séparable
de Q et donc une algèbre étale ([3] chap. V, p. 35, déf. 1).

On note £vect l'espace vectoriel sous-jacent à et on pose:

n dim £vect [£ : le]

Si .x e E,onnote ux l'endomorphisme linéaire de £vect défini par

"*(30 xy
de telle sorte que

:

; "a • V "a + "y " vv "a "v • x, y e E -,

Lautrement
dit, l'application u:£ - £nd(£vect) définie par u:x^uxest un

homomorphisme de le-algèbres.
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Soit co [oeq,..., con] une base du /c-espace vectoriel £vect. Cette base

définit un isomorphisme Q de kn sur E défini par

Q(x1, X„) Xi»! + + x„con.

On pose, pour x e E,

7t(x) Q'1uxEl,

de telle sorte que

n: E -> Mn(k)

est un homomorphisme de /c-algèbres. On pose

n(E) B(k) ;

ainsi B(k) est une sous-algèbre commutative et unifère de Mn(k), de dimension

n sur k. Comme sous-espace vectoriel de dimension n de Mn(k), l'algèbre

B(k) est définie par N n(n— 1) équations linéaires à coefficients dans k:

f^x) 0,) 0 ;

on notera F l'application linéaire de Mn(k) dans kN de coordonnées fl,fs
de sorte que B(k) est égal au noyau de F.

Pour toute extension K de k, on pose

B(K) {x e Mn(K) \ F(x) 0} ;

c'est une sous-algèbre de Mn(K) qui admet tc(co) n:(co„)] pour bas?.

Pour x ® X e E ®k K, on pose :

n(x(g)X) Xn(x);

l'application k ainsi prolongée est K-linéaire et définit un isomorphisme c;
X-algèbres :

ti:E ®kK -+ B(K)

(en effet, ici encore, n transforme une base de E <S) K en une base de B(K).
On pose

T(K) B(K) n GLn(K),

le groupe T(K) est donc le groupe des éléments inversibles de B(K) ; e t

effet si x e B(K)* alors x e GLn(K).

Réciproquement, si x g B(K) a un déterminant non nul, l'applicatio: i

y i-^ xy de B(K) est K-linéaire et injective (puisque x a un inverse dan ;
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GLn{K)\ donc surjective, et il existe donc y e B(K) tel que xy 1. La
définition de T(K) montre que T est un sous-groupe algébrique commutatif
de GLn.

Prenons en particulier pour K une extension algébriquement close k de k ;

l'algèbre B(k) est diagonalisable (cf. [3] chap. V, p. 29, Prop. 2); elle est

donc isomorphe sur k à l'algèbre produit kn, par conséquent, le groupe

T(k) est isomorphe à (k*)n ce qui démontre la

Proposition 1. Le groupe T est un tore maximal de GL(n) défini
sur k (et donc un sous-groupe de Cartan) (cf. [1], § 8.5, p. 205 et 316).

Remarque. Dans le cas où E est un corps de nombres sur Q, l'homo-
morphisme n donne bien un plongement de E dans une algèbre B(Q)
de matrices rationnelles.

Chapitre II

Classes d'idéaux et extensions algébriques

On suppose maintenant que k est un corps de nombres sur Q et que E
est une extension de k.

Si v (resp. w) est une place de k (resp. de £), on note kv (resp. £J le
complété de k (resp. de E) en cette place et on pose :

Fv n •

vv|y

On note \x„l'application

2A; (g) (Û,- -* SX.CO;

de E(g) kvdans Ew (elle n'est pas injective), et si les places de E au-dessus
de la place vde ksont les places wt,ws,on note

li:E®kv-+Fv
l'application telle que

p(x) (Ma-J, ps(A)).

C'est un isomorphisme de /ct,-algèbres (cf. [6], Th. 4, p. 56).
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