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L'Enseignement Mathématique, t. 31 (1985), p. 93-135

SÉRIES D'EISENSTEIN, INTÉGRALES TOROÏDALES
ET UNE FORMULE DE HECKE

par Franck Wielonsky

Introduction

Soit E un corps de nombres sur Q; alors d'après une formule de Hecke,

on sait exprimer la fonction Zêta de E comme une somme finie d'intégrales
de séries d'Epstein (cf. [He], [S] ou [T] pour une formulation précise).

L'objet de ce travail est de donner une version adélique et généralisée de

cette formule en suivant une suggestion faite par Zagier (cf. [Z] pour le cas

des extensions quadratiques (cf. aussi [Ha])). Celle-ci exprime une égalité
entre la fonction Zêta d'une extension algébrique E de dimension finie n

sur un corps global k et l'intégrale sur un tore d'une série d'Eisenstein.
Le chapitre I est consacré à l'étude de ce tore: le choix d'une base sur k

de l'espace vectoriel V(k) sous-jacent à E détermine un plongement n de E
et plus généralement de E 0fc K, où K est une extension de k, dans une
sous-algèbre B(K) de Mn(K) dont l'ensemble des éléments inversibles T(K)
forme un tore maximal dans G(K). (On note pour simplifier G le groupe
algébrique GLJ.

Dans le chapitre II, on établit d'autres résultats de nature algébrique qui
sont utiles dans la suite.

Les séries d'Eisenstein adéliques sont étudiées dans les chapitres III et IV.
(Pour les séries d'Eisenstein sur SL2(R), on peut trouver des démonstrations
de la convergence et du prolongement analytique dans [L]). Soient x une
matrice de G(Afc), cp une fonction dans l'espace de Schwartz-Bruhat y(V(Ak)),
e (0,..., 0, 1) le dernier élément de la base canonique de l'espace vectoriel
V. co un quasi-caractère de Afcx a l'unique réel tel que:

I CD [ « CÛCT où COG(t) \ t \aAk, te A,x

g une mesure de Haar sur le groupe Ak
On pose
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M(cp, x, co) cp(e£x)co(det tx)d[i(t).
X

On montre d'abord la convergence de cette intégrale pour a > 1 /n. La
série d'Eisenstein E(cp, x, co) est alors définie par

£(cp, x, co) E M(<P> °>) -

yeP(k)\G(k)

où P(k) est un sous-groupe parabolique de G(k).

Nous montrons ensuite que cette série converge pour a > 1 en utilisant

une expression intégrale de celle-ci à savoir :

On décompose alors cette intégrale en un produit d'intégrales locales

correspondant à chaque place du corps global k.

La finitude du groupe Ck des classes d'idéaux de k en caractéristique 0,

la finitude du groupe des classes de diviseurs de degré 0 et le théorème
de Riemann-Roch pour le corps de fonctions k en caractéristique p
interviennent également dans la preuve de la convergence de ces séries. On

établit ensuite le prolongement analytique de ces séries à l'ensemble de tous
les quasi-caractères et l'équation fonctionnelle qu'elles vérifient, déduite de la

formule de Poisson pour les séries 0 définies par:

On dispose alors des notions nécessaires pour démontrer la formuk
recherchée. C'est l'objet du chapitre V. Un énoncé précis de cette formule es

le suivant : Soient Z le centre de G, |iZXT une mesure de Haar sur l
quotient T(k)Z(Ak)\T(Ak), Ç(cp, co) l'intégrale de Täte

E(cp, x, co) j co(det £x) £ cp(^£x)dp(t).
^eV(k)-{0}

0(<p, x, t) y cp(Çfx), feA;
ÇeC(/t)-jO)

«<p, ffl) cp(C)co(t)c/nÊ(t)

et

<PgW <P('f) Pour 3 e G(A*) ;

on a

| £(cp, tg, co)d[iz^T(t)co(det g) • Ç(cpg, co »Nm).
T(k)Z(\k)\T(Ak)
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On termine ce travail en montrant comment on peut retrouver la formule

classique de Hecke à partir de la formule adélique. Pour cela, on construit

une projection du quotient G(Q)Z(A)\G(A) dans le quotient Z(R)G(Z)\G(R)
en utilisant la décomposition bien connue du groupe G(A) :

G(A) - G(Q) • G + (R) • G(Z).

Pour obtenir la formule classique, on calcule quelle est l'image par cette

projection du domaine d'intégration T(Q)Z(A)\7YA) qui apparaît dans la
formule généralisée. En particulier, cela fait intervenir des résultats obtenus
dans le chapitre II.

Cet article reproduit une thèse de 3e cycle effectuée sous la direction
de Gilles Lachaud. Qu'il trouve ici exprimée ma reconnaissance pour l'aide
qu'il m'a apportée.

Chapitre î

Plongement d'un corps de nombres dans une algèbre
DE MATRICES RATIONNELLES

Dans ce qui suit, kdésigne un corps global (A-field dans la terminologie
de [6] p. 43) et £ une algèbre étale sur k ([3] chap. V, p. 28, déf. 1).

Exemple. On prend pour k le corps Q des nombres rationnels et pour E
une extension de dimension finie de Q; alors E est une extension séparable
de Q et donc une algèbre étale ([3] chap. V, p. 35, déf. 1).

On note £vect l'espace vectoriel sous-jacent à et on pose:

n dim £vect [£ : le]

Si .x e E,onnote ux l'endomorphisme linéaire de £vect défini par

"*(30 xy
de telle sorte que

:

; "a • V "a + "y " vv "a "v • x, y e E -,

Lautrement
dit, l'application u:£ - £nd(£vect) définie par u:x^uxest un

homomorphisme de le-algèbres.
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Soit co [oeq,..., con] une base du /c-espace vectoriel £vect. Cette base

définit un isomorphisme Q de kn sur E défini par

Q(x1, X„) Xi»! + + x„con.

On pose, pour x e E,

7t(x) Q'1uxEl,

de telle sorte que

n: E -> Mn(k)

est un homomorphisme de /c-algèbres. On pose

n(E) B(k) ;

ainsi B(k) est une sous-algèbre commutative et unifère de Mn(k), de dimension

n sur k. Comme sous-espace vectoriel de dimension n de Mn(k), l'algèbre

B(k) est définie par N n(n— 1) équations linéaires à coefficients dans k:

f^x) 0,) 0 ;

on notera F l'application linéaire de Mn(k) dans kN de coordonnées fl,fs
de sorte que B(k) est égal au noyau de F.

Pour toute extension K de k, on pose

B(K) {x e Mn(K) \ F(x) 0} ;

c'est une sous-algèbre de Mn(K) qui admet tc(co) n:(co„)] pour bas?.

Pour x ® X e E ®k K, on pose :

n(x(g)X) Xn(x);

l'application k ainsi prolongée est K-linéaire et définit un isomorphisme c;
X-algèbres :

ti:E ®kK -+ B(K)

(en effet, ici encore, n transforme une base de E <S) K en une base de B(K).
On pose

T(K) B(K) n GLn(K),

le groupe T(K) est donc le groupe des éléments inversibles de B(K) ; e t

effet si x e B(K)* alors x e GLn(K).

Réciproquement, si x g B(K) a un déterminant non nul, l'applicatio: i

y i-^ xy de B(K) est K-linéaire et injective (puisque x a un inverse dan ;
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GLn{K)\ donc surjective, et il existe donc y e B(K) tel que xy 1. La
définition de T(K) montre que T est un sous-groupe algébrique commutatif
de GLn.

Prenons en particulier pour K une extension algébriquement close k de k ;

l'algèbre B(k) est diagonalisable (cf. [3] chap. V, p. 29, Prop. 2); elle est

donc isomorphe sur k à l'algèbre produit kn, par conséquent, le groupe

T(k) est isomorphe à (k*)n ce qui démontre la

Proposition 1. Le groupe T est un tore maximal de GL(n) défini
sur k (et donc un sous-groupe de Cartan) (cf. [1], § 8.5, p. 205 et 316).

Remarque. Dans le cas où E est un corps de nombres sur Q, l'homo-
morphisme n donne bien un plongement de E dans une algèbre B(Q)
de matrices rationnelles.

Chapitre II

Classes d'idéaux et extensions algébriques

On suppose maintenant que k est un corps de nombres sur Q et que E
est une extension de k.

Si v (resp. w) est une place de k (resp. de £), on note kv (resp. £J le
complété de k (resp. de E) en cette place et on pose :

Fv n •

vv|y

On note \x„l'application

2A; (g) (Û,- -* SX.CO;

de E(g) kvdans Ew (elle n'est pas injective), et si les places de E au-dessus
de la place vde ksont les places wt,ws,on note

li:E®kv-+Fv
l'application telle que

p(x) (Ma-J, ps(A)).

C'est un isomorphisme de /ct,-algèbres (cf. [6], Th. 4, p. 56).
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Soit v le morphisme tel que l'on ait le diagramme commutatif

Soit r l'anneau des entiers de k et rv l'adhérence de r dans kv; on note

en outre R l'anneau des entiers de E et Rw son adhérence dans Ew.

(C'est le sous-anneau compact maximal de Ew (cf. [6], Cor. 1, p. 83)).

Enfin, on pose

Dv n R» ;

w\v

c'est le sous-anneau compact maximal de l'algèbre Fv.

Remarquons que R ® rv est le sous-anneau compact maximal de E ® kv.

En effet, puisque R est de type fini sur r, l'anneau R ® rv est compact,
et son image par p; est dense dans Rw. (car R est dense dans RWf),

donc lui est égale; on obtient \i(R®rv) Dv. C.Q.F.D.

Posons n(R(g)rv) Cv ;

on a donc un diagramme d'isomorphismes de r^-algèbres et de sous-anneaux

compacts maximaux:

R (g) rv ^ Cv

On pose enfin

Dv

B(rv) B(kv) n

Gv Zcùfr„ <= (g) ;

Gv est un sous r„-module de E <g>kv,etB(rv) est un sous-anneau de Ct,

car B(rv) est compact.



SÉRIES D'EISENSTEIN 99

Remarque. On a n(Gv) cz B(rv) si et seulement si rc(co£) e Mn(rv) pour
1 ^ i ^ n\ autrement dit si les coefficients de la table de multiplication

CDfcCÖ;

sont dans rv ; en effet, on a

j^n '

D'autre part, notons co* la base duale de co (cf. [1], p. 451); on a

B(rv) c= k{Gv) si et seulement si 7i(,co * e Mn(rv) pour 1 ^ i ^ n. Il s'ensuit

que Gv est un sous-anneau compact de E (g) kv dès que 7t(GJ c= ß(rj. On a

alors les résultats suivants :

Proposition 2. 1) Pour presque toute place v, on a

n(Gv) B(rv).

2) Pour presque toute place v, on a

Gv R (g) rv.

Démonstration. Pour 1) on utilise la remarque ci-dessus. Pour 2) on voit

que p(Gy) Dv en utilisant [6] Th. 4, p. 57. On a donc presque toujours
le diagramme d'isomorphismes

Remarque. Supposons l'anneau r principal, alors le r-module R admet
une base. En effet, un module sans torsion de type fini sur un anneau
principal est un module libre de rang fini (cf. [3], ch. VII, p. 19, Cor. 2).

Si eu est une telle base, c'est évidemment une base de E sur k. La
table de multiplication de cette base est alors à coefficients dans r, on a donc :

n{R) a B(r) B(k) n Mn(r)

et par conséquent

Cv n(R®rv) cz B{rv),



100 F. WIELONSKY

donc Cv B(rv) ; d'autre part

R®rv Ecotrv G„.

Il s'ensuit donc que lorsque l'anneau r est principal, et que l'on prend pour co

une base de R sur r, on a à chaque place v sans exception le diagramme (*).

Ecrivons v(B(rv)) Ow ; alors Ow est un sous-anneau de Rw. Soit
w|f

S l'ensemble des places de k telles que B(rv) # Cv. On a Ow Rw dès

que w ne divise aucune place de S. Posons :

0 n (OwnE) ;

alors 0 est un ordre de E et 0 est dense dans Ow.

On pose

T(rv)B(rv)x {xeB{rv)det x e }

Le groupe T(rv) est un sous-groupe compact de T(kv); il est maximal dès

que v $ S; on a un isomorphisme

no - no: •

w|t;

Posons

m n rov) et ôx n o: ;

V w

Notons A (resp. AE) l'anneau des adèles de k (resp. de E) et T(A) le

groupe des points de T à valeurs dans A. Avec ces notations, le résultat
suivant est immédiat :

Proposition 3. L'application v induit un isomorphisme

T(k)\T(A)/T(f)-£x\A£7Ô x

Si S 0, par exemple dans le cas où co est une base de R sur r

on a Ow Rw et

ôx n*: •

w

En définitive, on obtient le résultat suivant.

Supposons Gv R rv pour tout v. Cette condition est vérifiée si co est

une base de R sur r, ce qui est toujours pössible si r est principal.
Si X est une partie de k, notons [A]t; son adhérence dans kv.
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Pour x g T(A), soit IT(x) le réseau de kn tel que

UAxïïv r"vxv pour toute place v finie

Pour ce A £ soit IE(c) l'idéal fractionnaire de E tel que

Ue(c)1w cwRw Pour toute place w finie

Enfin, pour tout idéal fractionnaire / de E on note ^-1(7) son image par
l'isomorphisme Q-1.

Proposition 4. Avec les notations précédentes, si co est une base de R

sur r, le diagramme suivant est commutatif:

Aex -^1— T(A)

Ie It

o 1
Idéaux de E •- Réseaux de kn

Démonstration. 1°) Soit z„ e (Etg>/c„)x. On a

^_1(zu'G„) £2_1 ° Mz„(G„)

et puisque G„ £2(C), il vient £2 '(-.-G,.) O"1 o et done

(1' r^jt(z„).
2°) Soit (cj ef]^. Si G„ R ® r„, on a p_1(nRJ et donc

w|i>

(2) r'fwj-c, ti-'çncM.
3°) Soit ce A^ On a

D'autre part la relation (2) implique ncwRw u(p '(<VGr): on a donc

UeML q 1(c)tï • Gv.

Par la relation (1), il vient

r; - jc û i(c)D



102 F. WIELONSKY

ce qui prouve que

fi_1(/£(c)) Mv_1(c))

et démontre la proposition.

Chapitre III

Définition et convergence des séries d'Eisenstein

Dans tout ce chapitre, k désignera un corps global et Ak les adèles

de k.

1. Mesures sur Ak et Ak

On s'intéresse d'abord aux places infinies de k (dans le cas où
l'extension k est un corps de nombres). Sur le corps R, on choisit la mesure
de Lebesgue usuelle notée dx et sur le groupe multiplicatif Rx, on choisit

dx
la mesure de Haar Sur le corps C, on choisit la mesure

I X I

\dz A dz\ 2dx dy

et sur le groupe multiplicatif Cx, on prend comme mesure la mesure de

Haar:

| z |
~ 2

| dz A dz |

Pour chaque place finie v de /c, on note uv une mesure de Haar sur kv

complété de k en cette place. Soit rv le sous-anneau compact maximal de kv

on suppose que pour presque tout v, le réel positif mv av(rv) est égal à 1

Alors sur le corps global Afc, il existe une unique mesure notée a qu
coïncide avec la mesure produit na„ sur chacun des sous-groupes ouvert;

EK-EK de Ak où P est un ensemble fini de places de k contenant ai
veP v$P

moins les places infinies. Alors a est une mesure de Haar sur le corps Ak

dOLv(x)
Sur le groupe multiplicatif k*, on sait que la mesure —-— est une mesure

1*1«,

de Haar. (| x \v désignant le module de x e kv).
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Soit nv une uniformisante de kv ; on choisira comme mesure de Haar

sur k *, la mesure d\iv définie par

\nv\v d(*v(x)
d\Lv(x) ]

I

de sorte que l'on a le :

Lemme. Pour toute place finie v,

1 Ixl

dpv(x) mv

Démonstration.

m,

I

|*|„=1

da.v(x)E
|x|v^l " 0

1

dav{x)

dav(x) 1 -
|*|„=1

Wv=KI»
-1

doLv(x)

n»i ^ \v r dav(x)

\ Kv \v - 1 |X|V=1 I X I,
dpv{x).

Mv?i

Alors on définit la mesure de Haar p sur Akx comme l'unique mesure

coïncidant avec la mesure produit Yi th sur chacun des sous-groupes

n*» -r[r» •

veP v$P

2. Séries d'Eisenstein

Dans la suite, G désignera le groupe algébrique GL„; V un espace
vectoriel de dimension n, e — (0,0, 1) le dernier élément de la base

canonique de V et SP(V(Ak)) l'espace des fonctions de Schwartz-Bruhat
définies sur le vectoriel V(Ak) de la manière suivante:

On dira d'abord qu'une fonction / à valeurs complexes définie sur le
vectoriel V(Ak) est décomposable si elle s'écrit comme un produit

/m n u*v)

Pour les places infinies éventuelles, on demande que fv soit dans £f(V(kv))
1 espace des fonctions Cx à valeurs complexes à décroissance rapide, i.e.
quel que soit a e N"" (avec a1 si kvR et 2 si kB C) et quel



104 F. WIELONSKY

que soit iV > 1 il existe C > 0 tel que

i%)i < c(i+nur*
quel que soit tve kv.
Pour les places finies v, on demande que fv soit dans l'espace des

fonctions à valeurs complexes localement constantes et à support compact. On

notera également cet espace Sf(V(kv)). Enfin pour presque toute place finie v,

fv est la fonction caractéristique du réseau r".
Le C-espace vectoriel £f(V(Ak)) est alors l'espace des combinaisons linéaires

finies de fonctions décomposables telles que fv e £f{V(kv)) pour toute place v.

Proposition 5. Soit x une matrice de G(Ak), cp une fonction de

Sf(V(Ak)), co un quasi-caractère de Ak (i.e. un morphisme continu de

Ak dans Cx trivial sur kx a l'unique réel tel que

| co | coCT où coct(0 - | 11 aAk ;

alors Tintégrale

M(cp, x, co) cp(et x)co(det tx)d\x(t)
Afcx

converge pour a réel plus grand que l/n.

Démonstration. On peut supposer que la matrice x est la matrice unité

et que la fonction cp est décomposable :

•P-Ili. <P0e^(F(/O)
V

et (p„ est la fonction caractéristique de r" pour presque toute place finie
Soit Kv le support de la fonction cp^, il existe un entier cv tel que

K œ n~Cv -rnxvl>— *kß ' V '

où rj désigne le r^-module engendré dans V{kv) par la base canonique.

Soit gv la fonction caractéristique de n~Cv • r" et Mv le réel positif défini pg.'

Mv sup | cp,(x) | ;

xeV(kv)

on a l'égalité suivante :

I I < Mv • Gv(x).
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D'autre part

ü0(et„) • 11J r tp \ 7 dy,

car

et„ (0,0, tv)envc"-ri

si et seulement si

Mais

t„ I.. ^ I nv

\tv\7 d\iv(tu)£
Wv 1^1^

Kir* d\iv{tv).

Posons 4, I rc, |
~1 > 1 ; on obtient :

00

41,(0 Z
- \tv\v=l r» 0

mv — lorsque a > 0.

Les réels Mv et mv sont presque toujours égaux à 1 et l'entier cv presque

toujours nul, donc le produit des intégrales

I <Pv(etv) I • K I r d\iv(tv)

converge,aux places finies est convergent lorsque le produit J~[ (1 -

c'est-à-dire quand na > 1 ou encore a > 1/n.

Aux places infinies l'intégrale converge si elle converge à l'origine
autrement dit si a > 0. La proposition 5 est démontrée.

Soit P le sous-groupe de G des matrices qui s'écrivent

où a est une matrice de GL„_1? b est un vecteur colonne ayant (n— 1)

composantes, d est un élément de l'anneau de base tel que d • det a soit
inversible dans cet anneau; on définit les séries d'Eisenstein de la manière
suivante :
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Proposition 6. Pour x e G(Afc), co un quasi-caractère de Afcx tel que

I CO I coCT, creR,

la série

£(cp, x, co) £ M((p, yx, co)

yeP(k)\G(k)

converge pour er > 1; on l'appelle la série d'Eisenstein associée à la fonction
<p de ^(K(A,)).

Enonçons d'abord le résultat suivant :

Lemme. L'intégrale

h \t\Z- I I <p(Çta) I dp(t)
kx\Ak ÇeF(fc)-{0}

est convergente si a > 1.

Démonstration. Comme la fonction cp de ^(P(Afc)) est quelconque, on

peut supposer x 1.

A) k de caractéristique 0.

Soit Pœ l'ensemble des places infinies de k, on pose:

tyPJ r? •

VePœ V*PO0

On sait que le groupe ^(P^) • kx\A£ est fini, isomorphe au groupe Ck

des classes d'idéaux de k. Soit Y un système de représentants dans hxk

du quotient • kx\A£ ; l'application canonique de 7 • Q(P00) dar s

/cx\Afcx est surjective.

Supposons qu'un élément a de /ex\Afcx s'écrive de deux manières distincte :

a jqaq y2co2 >

avec

y1,y2eY et ccq, co2 g Q(PJ

Alors il existe a dans kx tel que

ay1cd1 y2co2

ce qui entraîne l'égalité de y1 et y2 car ce sont des représentants d i

quotient kx • Q(P00)\Afcx Ainsi
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c'est-à-dire aerx, r désignant l'anneau des entiers de k. On a donc un

isomorphisme

Y-r*\Q(PJ^k*\Ak*

L'intégrale Ix se réécrit

h I
< z

ysY

\yt\Z- I \^yt)\dn(t)
terx\Q(P00) ÇeV(k)-{0}

fytIZ- Z \^yt)idii(t).
teQiP^) &V(k)-{0}

La fonction cp étant quelconque, on se borne à étudier la convergence de

feQ(F00) $eV(k)-{0}

ou encore celle de

;2 Z I !<pßf)HflX:4i(f
ÇgF(/c)-{0} J

ce qui se réécrit

d)

avec

et

^2 Z
ÇeK(fc)-{0}

Atë) -
r«,efcf.

n h® - n
L "eP Vi

J&) [
x

I <or(çf, i | • 4UU,
J r„erf.

I h |tJsi R,
I t,„ |2 si C

Comme dans la démonstration de la proposition 2, on note Kv le supportde la fonction cp„, cvl'entiertel que

K„ c n;c»
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De plus, on note av la fonction caractéristique de nvCv*r" et Mv le réel

positif défini par

Mv sup | <p„(x) |

xeV{kv)

(l'entier cv est nul et le réel Mv vaut 1 pour presque toutes les places

finies v). Alors

(2) n jv < n °v&vWv{tv)

Donnons une condition sur pour qu'en toute place finie v, e kv Cv • r".

Soit / n I nv\vc° e N <= r (r anneaux des entiers de /c), alors
V$P

ce

I f\v \nv\ï;
on a les équivalences successives suivantes :

%tve n~c* r" <=> | Ç f.< 1 n„<s> \Ç|„ < | \~1 «» | |„ < 1

et on en déduit que sera dans n~Cvr" pour tout v fini si et seulement

si g f~lrn. Si £, $ f~l rn, l'une au moins des intégrales JV{Q est nulle et il

suffit donc, dans la définition de /2, de sommer sur les f~lrn. On en

déduit alors de (1) et (2) la majoration

h < e n ij® n mv
^ef~lrn

d\Lv(tv) >

puis

i2 < n mA i n
ir-

OÙ mv est le réel positif défini en III.l.
Mais les fonctions cp,, où v est une place infinie sont à décroissance rapi :e

donc :

n m « n c,,i a+11^11 : d\iv(tv),
tvekv

où oc 1 si kv R, a 2 si kv C

On fait le changement de variables suivant :
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si v est une place réelle:

si v est une place complexe :

alors | uv \K H U • I tv|tj>de sorte que

n iv&^k iln Qi

K Il

K= Il Ç Il1 • tv

(l + \u±)-N-\u0\Zd\iv(K),

où d désigne la dimension de k sur Q.

_ Si kv R, l'intégrale correspondante dans le produit se réécrit :

a+wr"-j*rî^r
teR* IM

intégrale qui converge à l'infini si N est choisi assez grand et en 0 si

a > 0.

Si kv C, l'intégrale se réécrit :

(l + |z|2) N ' | z |
2na 2 dx dy 2

4k

(1 + p2) N ' p2nc 1dp i

e

(1 + p2)~N • p2na~1 dp

intégrale qui converge à l'infini si N est choisi assez grand et en 0 si

2/7(7—1 > — 1 c'est-à-dire si a > 0.

Il reste à montrer la convergence de la série

E i % il ~mdZ il /M il ~n°d
i / z n s il "M

Çe/_1rn Çer" Çern

on est donc ramené à la convergence de

Z nrnad.
Çer"

Si la norme utilisée est la norme définie par

Il Ç II « supiy pour é, (Çl9.

on obtient les égalités suivantes :

Z IU II ""ad Z sup I I

(Çi » • ••, Çn)er" i

Z sup I z'i °>i + - + I

zeZnd i
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avec z (zJ,z\,..., z\,znd\ et (aq,..., œd) est une base fondamentale
du Q-espace vectoriel k. Ainsi

Z II U "nod < 1 ©J ~n°d I sup I zi + - +i ~mi
'

Çer" zeZ"d i

où (ùio est un élément de la base fondamentale tel que

| COJ sup I <öf I

i 1 à n

On a encore les majorations suivantes:

X il 4 il < I ®io I
""ad Z sup sup I z'j I

~m"i
zeZnd i j

| daj-wi Z suplzjl"^
zeZnd i, j

I rfco;o I X II 2 II ""od
•

zeZnd

On sait que la série £ || z ||
~ncd

converge pour a > 1.
zeZnd

B) k de caractéristique p

On suppose que k est une extension algébrique de dimension finie du

corps Fp(T). Pour chaque place v de k, kv est de caractéristique p et si x
est un élément de kx, le nombre \x\v est dans le sous-groupe r0 de

R x engendré par p. La même chose est vraie pour le module | z |Ak

où z est un élément de Ak L'image de Ak par le morphisme z i— | z |Alc

est un sous-groupe non trivial du groupe r0. Supposons qu'il soit engendré

par un entier Q pN avec N entier ^ 1.

Choisissons zt dans Ak tel que: | zx |Ak Q. Alors Ak est le produit
direct de et du sous-groupe noté F engendré par zx évidemment

isomorphe à Z. D'autre part, on pose

W) FK >

v

on sait que le groupe quotient Q(c|)) • kx\Aj, est fini. C'est le groupe isomorphe
au groupe des classes de diviseurs de degré 0. (Voir [6], p. 97).

Soit Y un système de représentants dans Ak de ce quotient; l'application
canonique de T • Y dans Q,(<\>) - kx\Ak est bijective et on a également un

isomorphisme

kx\Ax -> L - Y(Q,(<\>)nkx\Q{<bj)
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ou encore

kx\A* -+r-Y(Fq\Q(<b))t

où ¥q est le corps des constantes de k c'est-à-dire le corps fini maximal

contenu dans k. Ainsi l'intégrale 11 se réécrit

1*i1aL I I (pfëzi3>*) I d\x(t)
%eV(k)-{0}

£ | cpfcz^yt) | d[i{t).
m-{o}

La fonction cp étant quelconque, on se borne à étudier la convergence de

yeY meZ
%

«IIyeY meZ t

teFq\n(4>)

I - m | na
I Z 1 IAk

(0)

ImeZ
'1 lAk % i cp(^T01 dm,

îeQ(<|>) $eV(k)-{0}

ou encore celle de

h= Z I zi
meZ

| mna X"1
I Ak Zu

^eE(fc)-{0} J iefî(<|>)

Z l zi mna
Ak z n

cpfëz^) I dp(t)

où z1?i; désigne la composante en la place v de Fidèle zx.

Déterminons un idèle zx particulier; on le choisit tel que: zx

avec z1>4 1 pour v =£ v0, zUvo nVo, v0 étant une place quelconque de k.

Alors l'intégrale I2 se réécrit :

h Z l*.
meZ

I mna X^
'^o I Zu

^eV(k)-{0}
El ^(0'

vfv0
I I dnjtj

où comme précédemment J„(^) désigne l'intégrale

I <Pv&v) I • d\iv(tv)

On suppose toujours que cp Y[ est une fonction décomposable de

f{ L(Ak)) et que, pour toute place v, | cp„ | ^ Mvov, où ay est la fonction
caractéristique de n~Cv • r". Pour que le produit contenu dans l'expression
sou non nul, il faut que l'élément E, de V(k) — {0} vérifie les conditions
suivantes :
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II £ IL < I n;Cv |„ pour +
II £ IL < I nvoC"°~mIvoPosons

L VZ", L0,m p;> + m>, et Lm (L„)„ ;

alors Lm est un système cohérent de /cy-réseaux de rang 1. (Voir [6],
p. 97).

Soit A(LJ et k n {LJ, A(LJ est un espace vectoriel sur le corps ¥q
V

des constantes de k dont on note sa dimension X(Lm). (Voir [6], p. 97).

Le produit contenu dans I2 est non nul (pour m fixé) si et seulement si

S e A(LJ.
D'autre part, soit am le diviseur associé au système Lm :

amE cv v ++ ;

vfvo

on sait que si son degré

deg amy cvdegv + (c„0 + m)deg v0
V + VO

est strictement négatif, c'est-à-dire si

m< cvo-(deg Vq)~• £ deg
vfv 0

alors HLm) 0 (voir [6], p. 100).

Il suffit donc dans l'expression I2 de sommer pour m ^ M de sorte que

I2Mvmv)XKo n°- X (!)•
v m^M ^eA(Lm)n — {0}

On doit étudier la convergence de

I \nvor°(q"^1).

Sachant que pour m assez grand, le théorème de Riemann-Roch donne

l'égalité

X(Lm) deg am - g + 1

où g est le genre de k (voir [6], Cor. 2 du Théorème 2, p. 101), on est

ramené à la convergence de

y q
— mna deg vo qnm deg vo _ ^ ^degt>o(l ~a)mn

m ^ M m ^ M
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Cette série converge pour a > 1.

Le résultat de la proposition 6 se déduit alors de :

Proposition 7. On a l'égalité

£(cp, x, co) co(det fx) • Y cp(é,fx)dp(f)
J K'*\AfcX (fc) — {0}

pour co quasi-caractère d'exposant a > 1.

Démonstration. On construit l'application suivante :

P(k)\G(k) x /cx -> F(fc) - {0}

(y, u) h-» ew y0

où Yo est une matrice dans la classe de y dont le premier élément non
nul sur la dernière ligne est égal à 1.

Puisque cette application est bijective, on peut écrire la série absolument

convergente Y comme
Z,eV(k)-{ 0}

X X 9 (<?" To tx),
.uefcx yeP(k)\G(k)

et par suite

co(det tx) • Y cp(é,fx)dp(f)
fc*\AfcX ÇeF(/c)-{0}

x
X X ®(det tx)

kx\Ak uekx yeP(k)\G(k)

Y co(det fx) cp(et y0 x)d\i(t)
A* yeP(k)\G(k)

x
yeP(k)\G(k) c

co(det tx) cp(et y0 x)dp(t)

puisqu'on a ici convergence absolue. Mais l'intégrale

M(<p, y0x, co) <p(et y0 x)co(det tx)dp(t)

ne dépend pas du représentant choisi dans la classe y de ainsi
on a bien



114 F. WIELONSKY

co(det tx) • ]T q>(tyx)d\x(t)
k*\A? &V(k)-{0}

Z
yeP(k)\G(k)

co(det tx) cp(et yx)d\i(t)
Ak

E{cp, x, co).

Chapitre IV

Le prolongement analytique des séries d'Eisenstein

Dans la suite, k désigne un corps global, E une extension de dimension

n sur k et V(k) l'espace vectoriel sur k sous-jacent à E.

1. La formule de Poisson

Soit x un caractère de Ak non trivial, trivial sur k et soit (x, y) la

formule bilinéaire symétrique sur V(Ak) non dégénérée définie par

(x, y)

où Tr désigne la trace absolue TrE/k; alors on peut identifier V(Ak) ave

son dual topologique par l'isomorphisme qui a un élément x de V{A-,

associe le caractère %(x, y) de V(Ak).

Soit a la mesure de Tamagawa de AE pour laquelle le quotient £\A
est de mesure 1, avec l'identification précédente; la transformée de Fourie
d'une fonction (p de y(V(Ak)) est définie par

<p(y) <p(x) x(x, y) da(x),pour y e V(Ak),
y (Ak)

et la formule de Poisson pour le sous-groupe discret à quotient compac
V(k) dans V(Ak) s'écrit

Z <PW Z (p(y) pour (pe£f(V(Ak)),
xeV(k) yeV(k)

l'orthogonal de V(k) s'identifiant à V(k).
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Propositions. Soit cp une fonction de £f(V(Ak)); on pose

0((p, x, t) Ya <Pféta)
^eV (k) — {0}

pour x e G(Ak) et te Ak ; alors

0(cp, x, t) + (p(0) I det tx IâJ (0(cp, 3c-1, t'1) + <p(0)),

où x désigne la matrice adjointe de la matrice x pour la forme bilinéaire
(a, b) :

(ax, b) (a, b, x), a, b e V(Ak).

Démonstration. On pose

- V&x) pour Ç g V(Ak);

<P&x) x(^, r|) da©
V(Ak)

alors \j/(rj)

Si on fait le changement de variables é, i— s ty, on obtient

$(Tl) I t lÂ"'

Posons encore z sx; alors

cp(sx) x(st \ r|) doc(s).
V(Ak)

\j/(p) | det tx 1 1
cp(z) x(zx \ r\)da.(z)

V{\k)

- I det tx t^1 • cp(z)x(z, Tit
1

J K(Ak)

i det tx jAl/ • cp(r|t !3c L).

Appliquons la formule de Poisson; on obtient l'équivalence des égalités
suivantes :

Z MÇ) Z >

t,sV(k) rieK(fc)

0(cp, X, t) + <p(0) I det tx IâZ - z <f>(Ttf ~ 'Je-'),
T\eV(k)

0(cp, x, t) + cp(0) | det tx | Ak* (0(cp, x"1, t-1) + cp(0)).
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2. Le prolongement analytique et l'équation fonctionnelle
DES SÉRIES D'EISENSTEIN-

Définissons une relation d'équivalence sur les quasi-caractères de Akx :

on dira que deux quasi-caractères sont équivalents s'ils coïncident sur les idèles

Al de module un. Sachant qu'un quasi-caractère trivial sur Ak est de la

forme | a \s, se C, une classe d'équivalence est constituée de tous les quasi-
caractères de la forme co(a) co0(a) • | a |s, où co0 est un caractère de Akx,

représentant fixé de la classe et s un nombre complexe déterminé de manière

unique par co. On a donc paramétrisé une classe d'équivalence de quasi-
caractères par une variable complexe s et on peut identifier cette classe avec

un plan si k est de caractéristique nulle et avec un cylindre si k est de

caractéristique p.

Choisissons une mesure de Haar sur Akx ; sur le groupe compact
/cx\Ak, on choisit la mesure de Haar px telle que p1(/cx\Ak) 1.

Soit N le groupe tel que l'on ait la décomposition

/cx\Akx kx\Al x N;

on définit une mesure p2 sur N par

dn
dp2(n) — si N R +

n

et P2({1}) 1 si N est isomorphe à Z

Sur le groupe kx\Akx, on considère la mesure produit p m x p2

Enfin, sur Akx, on choisit la mesure p dont l'image dans le quotieni
/cx\Akx est la mesure définie précédemment. On sait d'après le chapitre

précédent que la série E(cp, x, co) est holomorphe sur l'ensemble des quasi
caractères co de la forme co0(a) • | a |s avec Re s > 1. Le prolongement analytique

et l'équation fonctionnelle des séries d'Eisenstein sont donnés par la

Proposition 9. On peut prolonger analytiquement les séries E(cp, x, co)

à Fensemble de tous les quasi-caractères. Soit Xn{Al) le groupe des quasi-

caractères d'ordre n de Al; la fonction prolongée est une fonction

méromorphe dans C et holomorphe sauf si coex„(Ak) où si co(a)

co0(a) • I a | avec co0 g x„(Ak); elle admet respectivement en ces points un

pôle simple de résidu - pcp(0)co(det x) et un pôle simple de résidu
n

— - pcp(0)co ~ x(det x) avec
n
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p 1 si k de caractéristique 0,

P (loger1 si iv {g*}veZ.

Enfin la fonction prolongée vérifie Féquation

£(cp, x, co) E(cp, 3c " \ ob),

où G) est le quasi-caractère de Ak défini par

&(t) I 11 • co_1(0

Démonstration. On décompose la série E(cp, x, co). Les idèles de module un
/cx\Afc étant de mesure non nulle, on ne peut pas écrire E(cp, x, co) comme
la somme d'une intégrale sur les idèles [ t | ^ 1 et d'une intégrale sur les

idèles | 11 > 1. Il faut donc choisir sur R+, deux fonctions continues F0
et F1 avec les propriétés suivantes :

(i) F0 ^ 0
# ^ 0, F0 E F1 \

(ii) Il existe un intervalle compact [t0, tfi\ dans R + tel que

FM 0 Pour 0 < t < r0,

F fit) 0 pour t > t1

On demande de plus que

F0{t) F fit'1) pour tout t ;

pour cela, on choisit pour Fx une fonction continue définie sur t ^ 1

avec

Fi(l) ^ et F fit) 0 pour t ^ tl > 1.

Enfin, on pose

et

F fit) 1 - F fit pour 0 < t < 1

F0 1 - Fx

Alors la série £((p, x, co) peut s'écrire comme une somme E E0 + Ex avec

F0((p, x, co)

Efiq>, x, co)

co(det tx) 0(cp, x, t) F0{\t\Ak)d[i(t)
k"\Ak

co(det x) 0(cp, x, t) Ffi\t\Ak)dp(t).
h*\Ak
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L'intégrale E0(cp, x, cd) est une fonction entière définie sur l'ensemble de tous
les quasi-caractères.

Choisissons B > 1. Pour er e R, a ^ B, teR+, on a

tnaF0(t) ^ t\f ~ß) • tnB

Ceci donne la majoration suivante :

k*\Afc

det tx |J* • | 0((p, x, t) | • F0(|t|AJ dn(t)

<5 t 0 det x I
CT

• It
**\a,c

Ak 0(cp, x, t) | ùp(t),

intégrale qui converge d'après le lemme de la proposition 6 du chapitre III.
Ainsi, on obtient la convergence uniforme de E0(q>, x, co) sur tout compact de

C et l'application co - co) est holomorphe.
On exprime à présent l'intégrale E1 en fonction de l'intégrale E0 en

utilisant la formule de Poisson. Pour cela, on fait le changement de variables
Ce changement transforme la mesure de Haar p en une mesure

de Haar cp, où c2 1 puisque c'est un homéomorphisme d'ordre 2 de

kx\A£ donc c 1 et on obtient

£1(9, x, co) ©(det txx) • 0(9, x,
k*\Ak

£'o(9, x, cd) + Ri(9, x, cd) — R2{(p, x, cd)

avec

£'0(9, w)
k*\Ak

Rj(9, x, cd) $(0)

©(det t 'x) • | det t lx | ^0(cp,x \t)F0(|t|Afc)d|.i(t),

©(det t-1x) -1 det f_1x: | •

k»\Ak

R2(9, x, co) 9(0) • ©(det t xx) F0(\t\Ak)d\i(t).
k"\Ak

Soit T la matrice de G(Ak) telle qu'on ait l'égalité

(a, b) (aT\b),

où (a\b) désigne le produit scalaire euclidien a^b sur K(Ak); les matrices x

et x sont reliées par la relation

TxT1 - x,
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de sorte que les déterminants de x et 3c sont égaux et

E o(<p,x, ©)

CO *(det tx *) • | det tx x|Ak,0(9>^ \ t)F0(\t\Ak)d[i(t)
k*\Ak

Soit co le quasi-caractère de Ak défini par

&>(t) «= 111 • co_1(r);

alors £o(cp, x, co) £0($, 3c_ 1, co).

D'autre part, si le quasi-caractère co s'écrit

co(t) coo(0-1 t Is,

où co0 est un caractère fixé, représentant de la classe de co, les intégrales R1

et R2 se réécrivent

R^cp, x, co) (p(0)

cp(0)œ ~ *(det x)

©(det tx *)F0
k'\Ak

©öWurW-|U 111"5» • Fod'U«!)

et

9(0) co(det x)

R2(cp,x, ©)

«o'WlW • 0Â;s-n(itk)^2(ifi).

L'intégrale co 0 "(t)dn(t)vaut 1 ou 0 suivant que co"0 est trivial
J k"\Ak

non sur A.k. Notons 8(©0, n) ce facteur, alors

ou

f?i(<p, x, ©) cp(0) • © l(det x)8(©0, t\trsi<F0(\t\Ak)dn2(\t\

R2(q>,x,©) cp(0) ©(det x) 8(©0, n)

Si on note

OÄ;s-F0(it|Ak)dn2(|t|).

X(s)
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on obtient

Ex(cp, x, co) $(0) œ
~~ *(det x) ô(co0, n) X(n(l — 5))

et

R2{ty, x, co) cp(0) co(det x) 8(co0, n) X( — ns).

En utilisant [6] lemme 6, §5, chap. VII, p. 121, il s'ensuit que £(cp, x, cd)

est une fonction holomorphe sur l'ensemble de tous les quasi-caractères sauf

en co(a) co0(a) et co(cz) co0(a) • | a | lorsque co0 parcourt l'ensemble Xn(Al)
des quasi-caractères d'ordre n sur A^; en ces points, la fonction £(cp, x, co)

admet respectivement un pôle simple de résidu — pcp(0) co(det x) et un pôle
n

simple de résidu — - pcp(0) co-1(det x) avec
n

p 1 si k de caractéristique 0 et

p (log Q)~l si k de caractéristique p et N {QV}V6Z •

Enfin, en ce qui concerne l'équation fonctionnelle vérifiée par la série

E(cp, x, co), on a

£(cp, x, co) E0(cp, x, co) 4- E^cp, x, co)

£0(9, V + Eo($> 3c"1, ô) 4- ö(co0, n)[cp(0)c5~*(det x)X(rc(l — s))

4- cp(0)co(det x)X(ns)]

de sorte que

E(cp, x ~\ œ) E0(9, x ~ \ &) 4- E0(cp_ x, co) -h ô(co0, rc)[cp(0)co(det x)X(ns)

4- cp(0)<î) ~ *(det x)^(n(l — 5))]

où la fonction cp_ est définie pour 2, e V(Ak) par

<P-fé) q>(-«.

Comme E0(cp _ x, co) E0(cp, x, co), on obtient pour équation fonctionnel!

vérifiée par les séries d'Eisenstein

E(cp, x, co) £(9, F^œ).
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Chapitre V

Calcul des intégrales toroïdales des séries d'Eisenstein

On désigne toujours par k un corps global, par Ak les adèles de k,

par E une extension algébrique de k de dimension n et l'espace vectoriel

£vect sous-jacent à E est noté V(k).

On rappelle que l'on a le diagramme d'isomorphismes commutatif suivant :

Soit pE la mesure de Haar sur le groupe des idèles de A£; on note

\iT la mesure de Haar du groupe multiplicatif T(Ak) transportée par l'iso-

morphisme v-1, ainsi que la mesure induite sur le quotient T(k)\T(Ak).
On note de plus p la mesure de Haar sur chacun des quotients kx\Ak
et Z(k)\Z(Ak).

Il existe une unique mesure de Haar notée d\iZ\T sur le quotient
T(k)Z(Ak)\T(Ak) telle que pour toute fonction / e J>f(T(k)\T(Ak)\ on ait

f(xQdmdyiZVrW
Z(k)\Z(Ak)

f(x)dpT(x).
T(k)\T(AU)T(k)Z(Ak)\T(Ak)

On calcule à présent l'intégrale des séries d'Eisenstein sur le tore
T(k)Z{Ak)\T(Ak). Soit g dans G(Ak), cp dans Sf(V(Aj) et co un quasi-
caractère de Afcx ; on a les égalités suivantes:
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£(cp, tg, co) dpZKT(t)
T(k)Z(Ak)\T(Ak)

co(det z tg) E tg) d\i(z)d\iZ\T{t)
T(k)Z(Ak)\T(Ak) J fcx\Afc* >eV(k)~ {0}

co(det E
T(k)\T(Ak) Z,eV(k)~{0}

En observant que si t est un élément de T(Afc), on a l'égalité

det tW£\fc(v(t)) ;

l'intégrale précédente devient

co(det g)
E*\Ae &E*

E V&9) • ®(N

co(det 3) <P(t0) • <4NE\k(t))

Pour cp une fonction de £f(V(Ak)) et co un quasi-caractère de A on pose

Ç(<P, ®) cp(£)co(t) d\iE(t)

et

on a démontré :

%(t) <rt!9) P°ur 9 e G(A*) ;

Théorème 1. Soit k un corps global, E une extension algébrique finh
de k de dimension n, g une matrice de G(Ak), (p une fonction à

Sf(V(Ak)), co un quasi-caractère de Ak ; on a l'identité suivante:

£(<p, tg, co) d\iZXT(t) co(det g) • Ç(<p^ co o NEXk).
T(k)Z(Ak)\T(Ak)

Remarque. L'intégrale

E(cp, tg, co) dpZ\T(t)
T(k)Z(Ak)\T(Ak)

est appelée une intégrale toroïdale de séries d'Eisenstein.
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Chapitre VI

La formule intégrale de Hecke

Le but de ce chapitre est d'utiliser la formule établie dans le théorème 1,

dans le cas particulier où k est le corps Q et E un corps de nombres

sur Q, afin d'obtenir la formule intégrale de Hecke classique (Réf. [H]).
Dans un premier paragraphe on construira une application de l'ensemble des

matrices G(Q)Z(A)\G(A) dans l'ensemble G(Z) • ZJ\G(R) des matrices réelles

et on calculera l'image par cette application du tore T(Q)Z(A)\T(A). Dans
le deuxième paragraphe, on utilisera cette application pour retrouver la
formule de Hecke à partir de l'identité du chapitre précédent (Théorème 1).

1. La projection de G(Q)Z(A)\G(A) sur la place à l'infini
A. La projection n, : G(Q)Z(A)\G(A) -> Z G(Q)\G(A)/G(2)

L'ensemble Zœ désigne le sous-groupe de G(A) constitué des matrices z
telles que zœ soit une matrice scalaire non nulle et zp est la matrice identité
pour tout nombre p premier.

Soient M e G(A) et z e (A) avec

Z

où pour pfini, on exige que zpe Zp pour presque tout p et zpeQp
pour tout p.

Soit S l'ensemble des nombres premiers p tels que zp<£ Zp et soit p
un élément de S, il existe un entier np vérifiant

pnp'zpez;
Soit Q la matrice scalaire de Z(Q) dont les éléments diagonaux valent

fi P"p; ZQ est une matrice de Z^ • G(Z).
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Soit (ZQ)f la matrice adélique coïncidant avec ZQ aux places finies

et égale à 1 à la place infinie, et (ZQ)œ la matrice adélique égale à

Z^Q à la place infinie et égale à 1 aux places finies; on a la décomposition
suivante :

ZM - ZQ-Q-'M
(ZQ)o0-(ZQ)f

(ZQ)xQ-'M(

Ce qui précède montre que la projection qui a un élément de

G(Q)Z(A)\G(A) fait correspondre la classe dans Z00G(Q)\G(A)/G(Z) d'un

représentant quelconque de cet élément, est bien définie.

B. Il y a une bijection n2 entre G(Q)\G(A)/G(Z) et G(Z)\G(R)

En effet, on considère l'application de G(R) dans G(Q)\G(A)/G(Z) qui a

une matrice g de G(R) associe la classe de (g, 1,..., 1,...) dans G(Q)\G(A)

/G(Z). Cette application est surjective puisqu'on a la décomposition bien

connue de G(A) :

G(A) G(Q).G+(R).G(Z)

(voir par exemple [5], pp. 143-146 pour le cas n 2 et la démonstration

est la même pour n quelconque).

Supposons que les matrices g et g' aient la même image. Alors on a

une égalité

ygk Y g' k',

avec y, y' g G(Q) et k, k' e G(Z) ; par suite

Y"1 y' g kk'-1 g1'1g g''1 kk''1

Mais l'intersection G(Q) n G(R) • G(Z) est réduite à G(Z) ; cela entrai; s

l'existence d'un élément a de G(Z) tel que

Y ycr, g <sg', k ak'.

Ainsi g et g' ont la même image si et seulement si ces matrices so t

congrues modulo G(Z). On a démontré :

Proposition 10. L'application n2 ° n1 où

n, : G(Q)Z(A)\G(A) ZœG(Q)\G(A)/G(Z)
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et

ti2: ZÛ0G(Q)\G(A)/G(Z) - Z(R)G(Z)\G(R)

sont définies comme précédemment, n'est autre que la projection canonique de

G(Q)Z(A)\G(A) sur Z(R)G(Z)\G(R).

C. L'image du tore T(A) dans Z(R)G(Z)\G(R)

L'image de T(Q)Z(A)\T(A) dans Z^GCQAGfAJ/G^) est

Z„T(Q)\T(A)/T(Z).

Dans le cas particulier où l'on considère un corps de nombres E sur Q,

muni d'une base fondamentale (oeq,coj, on déduit de la proposition 3

du chapitre II et de la remarque qui suit qu'il y a un isomorphisme v
de T(Q)\T(A)/T(Z), sur £x\A^/(]71 où r^ désigne le sous-anneau

compact maximal de E^. Ainsi ZœT(Q)\T(A)/T(Z) s'identifie à l'ensemble
Rx • LX\A£/(]"] r^) qui se projette dans le groupe des classes d'idéaux
de E

E^E*\AÏ/(ftr;),
où on a noté Eœ le produit des complétés aux places infinies Yl ^v

veP
•

00

Soient h le nombre de classes de E et i^j)j=läh, un système de représentants
de ces classes dans A£x on a une bijection

R*.£*\A*/(nr;)^ y
j l à h

En combinant cette bijection avec l'isomorphisme

ZcoT(Q)\ T(A)/T(Z) ^ R* • £x\A£7(n rp
on peut écrire

ZœT(Q)\T(A)/T(Z) y Hj-(ZXT(Z)\TJA)),
j — làh

où la réunion est disjointe et où la classe de la matrice Hj e T(A) dans
T, {\) T(Q)\T(A)/T(Z) correspond à la classe de l'élément a,, de AE

dans E* r*).Onchoisit de plus Hj telle que

(Hj)œ1

On cherche à présent l'image du quotient Zœ T(Q)\ dans
Z(R)G(Z)\G(R). Si on note h] l'image de la matrice Hj dans Z(R)G(Z)\G(R)
alo.-s l'image de ZœT(Q)\T(A)/T(Z) est [j
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Reste à déterminer un système de matrices hj. Pour chaque élément
de A £ dans le système de représentants des classes d'idèles, on note

aj Laia„j] un idéal de E dont la classe correspond par IE (voir la

proposition du chapitre II) à la classe aj.

Définition 1. On note Pj l'élément de G(Q), matrice de passage de la base

fondamentale (<%,co„) de E à la base [au,0Lnj\ de l'idéal aj9 dont la

E ligne est constituée des coordonnées du vecteur oc,-7- dans la base

(©!,-, COj.

D'autre part, on a le diagramme d'isomorphismes commutatif suivant
déduit de la proposition 4 du chapitre II

E*x\Al/(Y\r; ^ TX(A)\T(A)/T(Z)<= GJA)\G(A)/G(Z)

Ie 1 ' It 11 It ï 1

Idéaux de E ^ Q.'1 (Idéaux de E) <= Réseaux de Q"

Le réseau image par IT de la matrice (1, Pj,..., Pj9...) de G(A) est le réseau

associé à l'idéal aj par l'application D"1. En effet, quelque soit la place v

finie, les vecteurs qui engendrent le réseau (r"*Pj) ont pour coordonnées

dans la base canonique les coordonnées de o^j*..., anj dans la ba^e

(coi,..., coJ.

On en déduit que

Hj (1, n (Hj)p) (1, Pj,Pj,...) mod G(Z)
P

et par suite la matrice h-} est l'image de (1, Pj,..., Pj,...) dans Z00G(Z)\G(R),
c'est-à-dire Pj1. Par suite:

Proposition 11. L'image du tore Z00T(Q)\7n(A)/T(Z) dans

Z(R)G(Z)\G(R)

h

est la réunion (J Pj1 • (Z(R)T(Z)\T(R)).
j= i
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2. La formule intégrale de Hecke

On suppose toujours que E un corps de nombres sur Q. En choisissant

pour g la matrice identité, la formule adélique donnée dans le théorème 1

du chapitre précédent devient

£((p, x, co) dpZXT{x) Ç(cp, co°Ne/q)
r(Q)Z(A)\T(A)

On définit le quasi-caractère co de Ax/Qx de la manière suivante:

co(t) | t |sa, te Ax

avec s g C et g Res > 1.

Ainsi

® ° Ne/q(0 I 1, te AE

On définit la fonction cp de Sf(V(A)) par

<p T

avec, pour les places finies,

<Pp(tP) XLp(tp)> tpeE®Qp,
°ù 1lp est la fonction caractéristique du réseau Lp engendré dans E ® Qp

par la base fondamentale (co1,..., coj de E sur Q.

On note pp comme au chapitre II, l'isomorphisme de E <g> Qp sur

EU; le réseau Lp étant engendré par une base fondamentale, on a
Mp

de sorte que

mu) n ^.
M p

«pp^p-1 n Vf,
Mp

Pour la place infinie, on pose

«PooCO e~nm,

avec la fonction F définie par

F(t) L tf/W2 + 2 £ | CT,(t) |2
i— 1 i r i + l

°ù (CTi)i</<ri désignent les r1 plongements de E dans R, (oL r\ + 1 ^ i + r2
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les r2 plongements de E dans C non conjugués deux à deux et

an+r2 + i CTri + i P°ur 1 < 1 ^ r2 •

La fonction F peut également s'exprimer pour un élément t tl(ù1 +
+ tnco„ de E (g) R de la manière suivante :

F(t1(û1+... + t„a)„) X (i1co(/, + + t„(ö<i))2

ri•r;.
'1

+ 2 £ | fitof + + („©</> |2 (tx,..., t„)A • 'A [ i

\ î,

où on a noté co^ cr^co,) et A la matrice

co^ ••• ©<">

>(1) co(n)' n n

Enfin, on note comme au chapitre V :

\iE la mesure de Haar sur AE obtenue en prenant \xE avec

dx
— 1 Pour toute place finie / de E, d[i^(x) -—- pour les places

I x I

réelles de E et d[i^(x) \ x \
~ 2

• | dx A dx | pour les places complexes de E,

|iT la mesure de Haar sur T(A) et T(Q)\T(A),

p la mesure de Haar sur Ax, QX\AX et Z(Q)\Z(A),

\iZXT la mesure de Haar sur T(Q)Z(A)\T(A).

A) Calcul de Ç(cp, (d°NE/Q)

Pour a > 1, on a les égalités suivantes:

Ç(cp, cùoNElQJ <p(t) 11 iâe d]\E(t) n x
<P^ I | • | tflIs

(cf. [6], Prop. 10, p. 119).

Alors en utilisant [6], Prop. 11, p. 120 et lemme 8, p. 127, on obtien

Ç(<p,coo NEIQ)1T"S/2 n (1-M5)"1'
/ fi fini

où je x désigne une uniformisante de Notons
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GJs) n-^'2r0r'-(2irr(1"s)-r(s)";

alors

Ç(CP? CÛ°N£/q) ^oo(S) ' CE(5) >

où Ç.g désigne la fonction zeta de Dedekind de l'extension £.

B) Calcul de Vintégrale toroïdale

Dans la suite, on notera I l'intégrale toroïdale :

I £(cp, x, co)d\xZ\T{x).
T(Q)Z(A)\T(A)

On a vu que l'image par 71! du quotient (T(Q)Z(A)\T(A)) est

Z00T(Q)\T(A)/T(Z)

Mais ce groupe est isomorphe au quotient suivant :

(T(Q)Z(A)\T(A))/(T(Z)/Z(Z))

Lemme. Soit é, un élément de G(Z); alors

E(cp, xÇ, co) £(cp, x, co).

Démonstration. On a

£(cp, x, co) — X Y*»
yeP(Q)\G(Q)

et

M(cp, x, co) | det x I a • | <P(et x) • 11 |a Mt).

Il suffit de montrer

M(cp, x, co) M(cp, x£, co).

Mais e G(Z) donc | det E, |A 1 ; de plus en chaque place finie p,

^peG(Zp) donc etpxpeLp si et seulement si etpxp^p e Lp, ce qui prouve le

lemme.

Le groupe T(Z)/Z(Z) étant compact, on choisit une mesure de Haar
sur celui-ci de manière à ce qu'il soit de mesure 1. Si on prend sur le
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groupe ZO0T(Q)\T(A)/T(Z) la mesure quotient notée Az\r> on obtient comme
nouvelle expression de l'intégrale /

/
Z00r(Q)\T(A)/T(Z)

£(cp, x, co) d|iZ\rM *

puisque la série E est invariante par l'action de T(Z).
On a vu que le quotient ZœT(Q)\T(A)/T(Z) s'écrit comme une réunion

disjointe

U Hj(Z(R)T(Z)\T(R)).
j= i

Notons pToo la mesure induite par pzyT sur le quotient Z(R)T(Z)\T(R);
alors

I £ £((p, o))d|iTJ.x).
Z(R)T(Z)\T(R) 7=1

Pour chaque indice j de 1 à h, les matrices Hj et (hj, 1,1,...)
(P/1, 1,..., 1,...) sont dans une même classe de G(Q)\G(A)/G(Z). (Cf. la

remarque au-dessus de la proposition 11).

Comme les séries E sont invariantes par l'action de G(Q) à gauche et de

G(Z) à droite, on obtient

/ - £ £(9, hj.x, <f>)d\iTJx).
Z(R)T(Z)\r(R) j= 1

On calcule à présent les séries P(cp, x, co) dans le cas particulier où

x (xœ, 1,1). Alors

£(9i(*oo »
1> 1' ••)> ®) | det |

I det I5

UIA" £ <P

Q*\A* ÇeK(Q)-{0>

SeV(Q)-{0) Ri-nz;
I t Ia * 9 &

I det x„ I xÇeK(Q)-{0} \J

dt
f'yjtyxj—• n

0 t P
9J&WJit)

Soit h, un élément de K(Q) — {0}, de coordonnées c,„); alors l'intégrai'

9p(£,t)d|af,(t) est non nulle lorsque

Max(|^|p,...,|yp) < 1.
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Pour que le produit sur l'ensemble des nombres premiers des intégrales
précédentes soit non nul, il faut donc choisir é, de coordonnées (^)iàn
vérifiant :

6 n (QnZp) ;

P

donc ^ doit être un élément de Z. Par conséquent

£(cp, (xœ, 1,1,...), co) | det xœ |s • £
&V(k)-{0}

Voo&xjdt.

D'autre part on a

r + oo

r 2-cpjfyxjdt tns- 1 .e-nt2F^Xao)dt

Faisons le changement de variables

u nt2 • FfcxJ;
l'intégrale ci-dessus devient

1 fns

et puisque

-T - .7r"2-F(^J-2

F(t1a1 +... + t„(on)
h-

E(q>,(xœ, 1, -, l,..,)»<o)

on a

(*)

1 / ns \ ns

2r(y)7C"T'|detXoo|S' I («XX1A • 'Â'x
\ / ?eZ"-{0}

Dans le cas qui nous intéresse, les matrices xœ ont pour valeurs

xœ P]~lx, x e Z(R)T(Z)\T(R).
On rappelle que l'on a un isomorphisme

jr:(£0R)x -> R)

y tc(y).

D,: P'us, on vérifie facilement que l'on a le
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Lemme. Soit y un élément de (£(g)R)x;

7ü(y) AD(y)A~1

où D(y) est la matrice diagonale (y(1),y{n)).

Soit v l'isomorphisme défini au chapitre II, en prenant pour v la place

infinie, on voit que v applique T(R) sur (R + )ri x (Cx)r2 et que

v o 7r(y) (y{1),y{ri+r2)).

Pour y — (y(1),..., y(ri+r2)) un élément de (Rx)ri x (Cx)r2, on note

riT±rr2 dy riT±rr2 dyx
NyFI I yiIeiet — n

avec

et

1 1 I J i I 111 ie; '
;=i y f i kr,-

ex 1 pour 1 ^ i ^ r1

ex 2 pour + 1 i ^ r1 + r2

Définition 2. Soit P une matrice d'ordre n réelle, symétrique, définie

positive ; on définit la série d'Epstein Z(P, s) où s est un nombre complexe

n
vérifiant Re s > — :

2

Z(P, S)
'• I (qP'qy.

z- qeZ"-{0}

Avec cette définition et en utilisant la relation (*), l'intégrale / se réécrit i
présent I-r | • 7l"T •

où J est définie par

h

J= I7=1 J
• Z Pj'AD(y)'A

y (yi,...,yri+r2)e@ \ ^ J -V

et ^ est un domaine fondamental dans (Rx)ri x (Cx)r2 correspondant p«'
*

l'isomorphisme v à un domaine fondamental de Z(R)T(Z)\T(R).
Posons comme nouvelles variables

Ti| ^! (2;... ; Tri+r2 |.j>ri+rJ2
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et pour toute matrice P de G(R), écrivons

P° (det P)~1/n - P l

il vient

J2ri ~ 1(47i)ri • 2_(ri +r2)

avec

K= Ij= 1

z (P°r WD(t) 'A°<(P°) - s n 71 >

V2 dX:

où l'intégraie porte sur les x (xl5..., xri+r2)eU/H et où det(À)2

désigne le discriminant de E, D(x) la matrice diagonale

(xixri+^xri + r2, xri _|_ ^xrt + r2),

H le sous-espace de (R *)ri+r2 défini par l'équation

ri +r2

n 1

i 1

et U l'image dans H des unités du corps de nombres E.

On fait encore le changement de variables suivant :

Rri+r2 R+ x Rr

(il,..., Tri+rj) )->(«, Xr)

où r r1 + r2 — 1 et

r

ij w • n 1 eF) 12xi' p°ur 1 ^ j < ri + o

où (ex,£r est un système d'unités fondamentales de E.

Le Jacobien de ce changement de variables est

Y[ L u
1

• 2ri 1
• n R

i 1

où R désigne le régulateur de E défini par

Ibfe,

R - - 2r2
n

cdi81 ,(i)

p (r + 1)
8 1 cri}
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D'autre part, les unités de E ont pour image le réseau Zr dans Rr et

les racines de l'unité contenues dans E ont pour image le vecteur nul. Si

w
on note w le nombre de ces racines alors le cardinal de U est —.

2

Finalement l'expression K devient

K T'-w-'nRtfz(p°x,^W
j= 1 J xe[0,l]r \ ^ /

où on a noté Pj x la matrice

Pj,x /^ADM'A'OPr1).
Réécrivons à présent l'égalité du théorème 1 avec les expressions qui
viennent d'être calculées.

Proposition 12 (Formule de Hecke). Soit

ae(s)K"l2\dE\Vsr fty* rw> Us)

et pour une matrice P réelle, symétrique, définie positive, posons

A(P, 5) n~T(s) Z{P, s)

Alors

h

w • AÊ(s) 2ri 1
• £

j i

ns
A( PjX

xe[0,l]r

Remarque. Il serait intéressant de faire le calcul précédent dans un ca

plus général où l'on considère un quasi-caractère co de Ax quelconque
Ainsi co o NE/Q correspond à un caractère de Hecke sur le groupe des idéau

de E (cf. [4], chap. 8, §3, p. 156) et la difficulté est alors de calculer l'inté

grale toroïdale aux places finies sur lesquelles le quasi-caractère co ° NEi

se ramifie.
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