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L’Enseignement Mathématique, t. 31 (1985), p. 93-135

SERIES D’EISENSTEIN, INTEGRALES TOROIDALES
ET UNE FORMULE DE HECKE

par Franck WIELONSKY

INTRODUCTION

Soit E un corps de nombres sur Q; alors d’aprés une formule de Hecke,
on sait exprimer la fonction Zéta de E comme une somme finie d’intégrales
de séries d’Epstein (cf. [He], [S] ou [T] pour une formulation précise).

L’objet de ce travail est de donner une version adelique et généralisée de
cette formule en suivant une suggestion faite par Zagier (cf. [Z] pour le cas
des extensions quadratiques (cf. aussi [Ha])). Celle-ci exprime une égalité
entre la fonction Zéta d’une extension algébrique E de dimension finie n
sur un corps global k et l'intégrale sur un tore d’une série d’Eisenstein.

Le chapitre I est consacré a ’étude de ce tore: le choix d’une base sur k
de I'espace vectoriel V(k) sous-jacent a E détermine un plongement © de E
et plus généralement de E ®, K, ou K est une extension de k, dans une
sous-algebre B(K) de M,(K) dont I'ensemble des éléments inversibles T(K)
forme un tore maximal dans G(K). (On note pour simplifier G le groupe
algebrique GL,).

Dans le chapitre II, on établit d’autres résultats de nature algébrique qui
sont utiles dans la suite.

Les séries d’Eisenstein adéliques sont étudiées dans les chapitres 111 et IV.
(Pour les séries d’Eisenstein sur SL,(R), on peut trouver des démonstrations
de la convergence et du prolongement analytique dans [L]). Soient x une
matrice de G(A,), ¢ une fonction dans I'espace de Schwartz-Bruhat #(V(A,)),
¢ = (0,..,0, 1) le dernier élément de la base canonique de I'espace vectoriel
V. ® un quasi-caractére de A", & l’uniQue réel tel que:

lo| = ®, ou co(,(t)=|t|§;k, teA;

K une mesure de Haar sur le groupe A .
On pose
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M(o, x, ®) = J ) o(etx)m(det tx)du(t) .

On montre d’abord la convergence de cette intégrale pour o > 1/n. La
série d’Eisenstein E(p, x, o) est alors définie par

E(o, x, ®) = Z M(o, vx, ),

yeP(\G(K)
ou P(k) est un sous-groupe parabolique de G(k).

Nous montrons ensuite que cette série converge pour ¢ > 1 en utilisant
une expression intégrale de celle-ci a savoir:

Eo,x0) = [ odetn) Y oG
g geV (k) — {0}
\Ak
On décompose alors cette intégrale en un produit d’intégrales locales cor-
respondant a chaque place du corps global k.

La finitude du groupe C, des classes d’idéaux de k en caracteristique 0,
la finitude du groupe des classes de diviseurs de degré O et le théoréme
de Riemann-Roch pour le corps de fonctions k en caractéristique p inter-
viennent également dans la preuve de la convergence de ces séries. On
¢tablit ensuite le prolongement analytique de ces séries a 'ensemble de tous
les quasi-caracteres et ’équation fonctionnelle qu’elles vérifient, déduite de L
formule de Poisson pour les séries 0 définies par:

0, x, ) = > oEtx), teA.
teV (k) — {0}
On dispose alors des notions nécessaires pour démontrer la formul
recherchée. C’est 'objet du chapitre V. Un énoncé précis de cette formule es

le suivant: Soient Z le centre de G, py; une mesure de Haar sur I
quotient T(k)Z(A)\T(Ay), {(o, ®) Pintégrale de Tate

X, 0) = f . 0(o()dug)

et
¢ (t) = @(tg) pour geG(A);

E(o, tg, o)z 1(t) = o(det g) - {(@,, ® o Ngy) .

T(k)Z(AN\T(Ak)
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On termine ce travail en montrant comment on peut retrouver la formule
classique de Hecke a partir de la formule adélique. Pour cela, on construit
une projection du quotient G(Q)Z(A)\G(A) dans le quotient Z(R)G(Z)\G(R)
en utilisant la décomposition bien connue du groupe G(A):

G(A) = G(Q)-G*(R)- G(Z).

Pour obtenir la formule classique, on calcule quelle est I'image par cette
projection du domaine d’intégration T(Q)Z(A)\T(A) qui apparait dans la
formule généralisée. En particulier, cela fait intervenir des résultats obtenus
dans le chapitre II.

Cet article reproduit une thése de 3° cycle effectuée sous la direction
de Gilles Lachaud. Qu’il trouve ici exprimée ma reconnaissance pour l'aide
quil m’a apportée.

Chapitre 1

PLONGEMENT D’'UN CORPS DE NOMBRES DANS UNE ALGEBRE
DE MATRICES RATIONNELLES

Dans ce qui suit, k désigne un corps global (A-field dans la terminologie
de [6] p. 43) et E une algebre étale sur k ([3] chap. V, p. 28, déf. 1)

Exemple. On prend pour k le corps Q des nombres rationnels et pour E
une extension de dimension finie de Q; alors E est une extension seéparable
de Q et donc une algébre étale ([3] chap. V, p. 35, déf. 1).

On note E, ., I'espace vectoriel sous-jacent a E; et on pose:

n=dmékE,, =[E:k].
Si x € E, on note u, endomorphisme k-linéaire de E, ... défini par
uy) = xy  (yeE),
de telle sorte que
Uevy = Uy + Uy Uy = uou,, x,yekE;

autrement dit, 'application u: E — End(E,..) définie par u: x s u, est un
homomorphisme de k-algébres.
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Soit ® = [w,, .., ®,] une base du k-espace vectoriel E, .. Cette base
définit un isomorphisme Q de k" sur E défini par

Qxy, X)) = X0, + ... + X,0,.
On pose, pour x € E,
x) = Q ' Q,
de telle sorte que
n: E - M, (k)
est un homomorphisme de k-algébres. On pose
WE) = B(k);

ainsi B(k) est une sous-algébre commutative et unifere de M,(k), de dimension
n sur k. Comme sous-espace vectoriel de dimension n de M,(k), algebre
B(k) est définie par N = n(n—1) équations linéaires a coeflicients dans k:

f1x) = 0., falx) = 0;

on notera F 'application linéaire de M (k) dans k¥ de coordonnées f, ..., [y
de sorte que B(k) est égal au noyau de F.
Pour toute extension K de k, on pose

B(K) = {xe M,(K)| F(x) = 0};

c’est une sous-algebre de M, (K) qui admet n(w) = [m(®,), ..., ©(®,)] pour bast.
Pour x ® ALe E @, K, on pose:

(x®A) = An(x);
I'application 7 ainsi prolongée est K-linéaire et définit un isomorphisme c:
K-algebres:

n: E ®, K - B(K)

(en effet, ici encore, © transforme une base de E @ K en une base de B(K .
On pose

T(K) = B(K) n GL,(K),

le groupe T(K) est donc le groupe des éléments inversibles de B(K); e
effet si x € B(K)* alors x € GL,(K).
Réciproquement, si x € B(K) a un déterminant non nul, I'applicatio:i

i

y xy de B(K) est K-linéaire et injective (puisque x a un inverse dan; U
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GL,(K)), donc surjective, et il existe donc y € B(K) tel que xy = 1. La défi-
nition de T(K) montre que T est un sous-groupe algébrique commutatif
de GL,,.

Prenons en particulier pour K une extension algébriquement close k de k;

lalgébre B(k) est diagonalisable (cf. [3] chap. V, p. 29, Prop. 2); elle est
donc isomorphe sur k a I'algébre produit k", par conséquent, le groupe

T(—IE) est isomorphe a (E*)" ce qui démontre la
PROPOSITION 1. Le groupe T est un tore maximal de GL(n) défini
sur k (et donc un sous-groupe de Cartan) (cf. [1], § 8.5, p. 205 et 316).

Remarque. Dans le cas ou E est un corps de nombres sur Q, 'homo-
morphisme m donne bien un plongement de E dans une algébre B(Q)
de matrices rationnelles.

Chapitre 11

CLASSES D'IDEAUX ET EXTENSIONS ALGEBRIQUES

On suppose maintenant que k est un corps de nombres sur Q et que E
est une extension de k.

Si v (resp. w) est une place de k (resp. de E), on note k, (resp. E,) le
complété de k (resp. de E) en cette place et on pose:

F, =[] E,.

wiv

On note p,, 'application
A ® ©; - Zho;

de E ® k, dans E,, (elle n’est pas injective), et si les places de E au-dessus
de la place v de k sont les places Wi, .., Wy, ON note

Papplication telle que

H(x) = (ul(x)a ey “’s(x)) :
C'est un isomorphisme de k,-algebres (cf. [6], Th. 4, p. 56).
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Soit v le morphisme tel que I'on ait le diagramme commutatif

T

E ® k, — B(k,)

Soit r 'anneau des entiers de k et r, ’adhérence de r dans k,; on note
en outre R l'anneau des entiers de E et R, son adhérence dans E,.
(Cest le sous-anneau compact maximal de E, (cf. [6], Cor. 1, p. &3)).

Enfin, on pose

D, = []R,;
wlv

c’est le sous-anneau compact maximal de l'algebre F,.

Remarquons que R ® r, est le sous-anneau compact maximal de E & k,.

En effet, puisque R est de type fini sur r, Panneau R @ r, est compact,

S

et son image par ; est dense dans R, (car R est dense dans R}
donc lui est €gale; on obtient W R®r,) = D,,. C.QFL.

Posons M(R®r,) = C,;

on a donc un diagramme d’isomorphismes de r,-algebres et de sous-anneau
compacts maximaux :

R®r, . C,

On pose enfin
B(r,) = B(k,) n M,(r,),
G, = Loy, < EQ k,;

G, est un sous r,-module de E @ k,, et B(r,) est un sous-anneau de C,. |
car B(r,) est compact.
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Remarque. On a n(G,) = B(r,) si et seulement si m(w;) € M,(r,) pour
| < i< n; autrement dit si les coefficients de la table de multiplication

O“)ho‘)j = Zagﬁ)l
sont dans r,; en effet, on a
_ h
m(w,) = (aij)l <i,j<n-

D’autre part, notons o* la base duale de o (cf. [1], p. 451); on a
B(r,) = n(G,) si et seulement si m(w})e M,(r,) pour 1 <i<n Il s’ensuit
que G, est un sous-anneau compact de E ® k, des que n(G,) < B(r,). On a
alors les résultats suivants:

PROPOSITION 2. 1) Pour presque toute place v, ona
nG,) = B(r,).

2) Pour presque toute place v, ona
G,=RQr,.

Démonstration. Pour 1) on utilise la remarque ci-dessus. Pour 2) on voit
que w(G,) = D, en utilisant [6] Th. 4, p. 57. On a donc presque toujours
le diagramme d’isomorphismes

G, = RQr,

D

v

Remarque. Supposons l'anneau r principal, alors le r-module R admet
une base. En effet, un module sans torsion de type fini sur un anneau
principal est un module libre de rang fini (cf. [3], ch. VIIL, p. 19, Cor. 2).

Si ® est une telle base, c’est évidemment une base de E sur k. La
table de multiplication de cette base est alors a coefficients dans r, on a donc:

T(R) < B(r) = B(k) n M (r)
€t par conséquent

C, = ©R®r,) = B(r,),
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donc C, = B(r,); d’autre part
R®r, = Zor, = G,.

Il s’ensuit donc que lorsque 'anneau r est principal, et que 'on prend pour ®
une base de R sur r, on a a chaque place v sans exception le diagramme (*). |
Ecrivons v(B(r,)) = [] O,,; alors O,, est un sous-anneau de R,,. Soit

w|v

S T'ensemble des places de k telles que B(r,) # C,. On a O, = R, dés
que w ne divise aucune place de S. Posons:

O=n(O,nE);

alors O est un ordre de E et O est dense dans O,,.
On pose

T(r,) = B(r,)” = {xeB(r,)|detxer,}

Le groupe T(r,) est un sous-groupe compact de T(k,); il est maximal des
que v ¢ S; on a un isomorphisme

Ter,) > [0 .

w|v

Posons
TAH =]][T(r,) e 0~ =TJ]0);

Notons A (resp. Ag) l'anneau des adeles de k (resp. de E) et T(A) le
groupe des points de T a valeurs dans A. Avec ces notations, le résultat
suivant est immediat:

PROPOSITION 3. L’application v induit un isomorphisme
T(\T(A)/T(H) - E*\A; /O ™ .

Si § = @, par exemple dans le cas ou ® est une base de R sur r |
onaQ, = R, et |

0" =[]Ry.

En définitive, on obtient le résultat suivant. ; ’

Supposons G, = R ® r, pour tout v. Cette condition est vérifiée si ® est | .
une base de R sur r, ce qui est toujours possible si r est principal.
Si X est une partie de k, notons [ X], son adhérence dans k,,.
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Pour x € T(A), soit I(x) le réseau de k" tel que
[1(x)], = rix, pour toute place v finie .
Pour c € Af , soit Ig(c) I'idéal fractionnaire de E tel que
[Igc)],, = cwR,, pour toute place w finie .

Enfin, pour tout idéal fractionnaire I de E on note Q™ !(I) son image par
lisomorphisme Q™.

PROPOSITION 4. Avec les notations précédentes, si ® est une base de R
sur 1, le diagramme suivant est commutatif :

v~ 1

Ag T(A)
Ie I
Idéaux de E ~ Réseaux de k®

Démonstration. 1°) Soit z, € (EQk,)™. On a
Q7 Yz,G,) = Q' ou, (G,)
et puisque G, = Q(ry), il vient Q" Yz,,G,) = Q"' ou, Q") et donc
(1) Q Y z,G) = r" - n(z,) .

2°) Soit (cw)wlveHEfj. Si G,=R®r,, ona pn (IIR,) = G, et donc
w|v

(2) n((ew),,) s G, = p (e, R,).

3°) Soitce A . Ona
WLIe(0)],) = Me,R, .

Dautre part la relation (2) implique Ilc, R, = Wu~*e),G,); on a donc
[0, = 1 (e), - G, .

Par la relation (1), il vient

[Q7 5], = Q7 [Ux)],) = Q™ Hu"Y(¢)G,)

=rymep o), = v o),
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ce qui prouve que

QY1) = I{v-i(e)

et démontre la proposition.

Chapitre 111

DEFINITION ET CONVERGENCE DES SERIES D’EISENSTEIN

Dans tout ce chapitre, k désignera un corps global et A, les adéles
de k.

1. MESURES SUR A, ET A}

On s’intéresse d’abord aux places infinies de k (dans le cas ou lex-
tension k est un corps de nombres). Sur le corps R, on choisit la mesure
de Lebesgue usuelle notée dx et sur le groupe multiplicatif R, on choisit

X .
la mesure de Haar l—— Sur le corps C, on choisit la mesure
X

|dz A\ dz| = 2dx dy

et sur le groupe multiplicatif C*, on prend comme mesure la mesure de
Haar:

12|72 |dz A d7].

Pour chaque place finie v de k, on note o, une mesure de Haar sur k,
complété de k en cette place. Soit r, le sous-anneau compact maximal de k,
on suppose que pour presque tout v, le réel positif m, = a,(r,) est égal a 1
Alors sur le corps global A,, il existe une unique mesure notée o qu
coincide avec la mesure produit ITa, sur chacun des sous-groupes ouvert:

[[k,-[]r, de A, ou P est un ensemble fini de places de k contenant at
veP véP '
moins les places infinies. Alors a est une mesure de Haar sur le corps A,

do,(x)
est une mesure

Sur le groupe multiplicatif k, , on sait que la mesure x|
X v

de Haar. (| x |, désignant le module de x € k,).
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Soit 7, une uniformisante de k,; on choisira comme mesure de Haar
sur k*, la mesure dp, définie par
|7, |, do(x)

|, l, — 1 Ixl

dpy(x) =
de sorte que l'on a le:

LEMME. Pour toute place finie v,

J duv(x) = m,.
[x]v=1

Démonstration.
[0 6]
m, = J do,(x) = J do(x) = ). . doy(x)
Xery, |x|vs1 n=0J |x|y=|mu},

0 1 -1
S NEA R f da,(x) = <1 - ) J o (x)
n=0 [x|,=1 [TCU IU [x]v=1

EN dot,(x)
= - v = d .
L o T el ) g e

Alors on définit la mesure de Haar p sur A, comme l'unique mesure
coincidant avec la mesure produit []p, sur chacun des sous-groupes
v

[Tk -1

veP v¢P

2. SERIES D’EISENSTEIN

Dans la suite, G désignera le groupe algébrique GL,; V un espace
vectoriel de dimension n, e = (0,..,0,1) le dernier élément de la base
canonique de V et F(V(A,)) lespace des fonctions de Schwartz-Bruhat
définies sur le vectoriel V(A,) de la maniére suivante:

On dira d’abord qu’une fonction f & valeurs complexes définie sur le
vectoriel V(A,) est décomposable si elle s’écrit comme un produit

fe) =TT fulx).

Pour les places infinies éventuelles, on demande que f, soit dans L (V(k,))
lespace des fonctions C® & valeurs complexes a décroissance rapide, i.e.
Guel que soit o e N* (avec a = 1 si k, = Ret a = 2 si k, = C) et quel
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que soit N > 1 il existe C > 0 tel que

| 0*f,(t,) | < CAL+ )"

quel que soit t, €k, .
Pour les places finies v, on demande que f, soit dans l’espace des fonc-
tions a valeurs complexes localement constantes et a support compact. On
notera également cet espace ¥(V(k,)). Enfin pour presque toute place finie v,
f, est la fonction caractéristique du réseau r?.

Le C-espace vectoriel #(V(A,)) est alors 'espace des combinaisons linéaires
finies de fonctions décomposables telles que f, € #(V(k,)) pour toute place v.

PROPOSITION 5. Soit x une matrice de G(A,), © une fonction de
F(V(Ay), © wun quasi-caractére de A} (i.e. un morphisme continu de
A dans C* trivial sur k™), o [lunique réel tel que

o] = 0, ou o) =|t]%,.;
alors lintégrale
M(p, x, ®) = J (et x)o(det tx)dp(t)
A x
converge pour o réel plus grand que 1/n.

Démonstration. On peut supposer que la matrice x est la matrice unit¢
et que la fonction ¢ est décomposable:

¢=[lo,. o,eF(Vik,))
v
et ¢, est la fonction caractéristique de r! pour presque toute place finie
Soit K, le support de la fonction ¢,, 1l existe un entier c, tel que
K,cn,“-ry,

ou r? désigne le r,-module engendré dans V(k, par la base canoniqua..f
Soit &, la fonction caractéristique de m, - et M, le réel positif défini pe -

M, = sup | @ x)|; »

xeV(ky)

on a I’égalité suivante:

| 0,x) | < M, - 0,(x).
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D’autre part
f Glety) | 1, 107 duft,) = J e 187 dit)
kS tol, SImuly

car
et, = (0,..,0,t)em, @ 1}y
si et seulement si

leol, <Pl

Mais
e ]
J ‘ tu |2° duv(tv) = Z , l ch “‘)vnc duu(tv) .
ltol S|muly 7 ro=—cv J |to| = |mulp”
Posons g, = | ®, |, ' > 1; on obtient:
2. 4. f du(t,) = my g™ Y q,""
Fv= "¢y [tulvzl rv:O

= m,q"(1—q, ") ! lorsque ¢ > 0.

Les réels M, et m, sont presque toujours égaux a 1 et lentier ¢, presque
toujours nul, donc le produit des intégrales

J L oety) |12, 170 it
k

v

aux places finies est convergent lorsque le produit [](1—g¢, ™)' converge,
v

c’est-a-dire quand no > 1 ou encore ¢ > 1/n.

Aux places infinies l'intégrale converge si elle converge a lorigine
autrement dit si o > 0. La proposition 5 est démontrée.

Soit P le sous-groupe de G des matrices qui s’écrivent

a b
0 d
ou a est une matrice de GL,_,, b est un vecteur colonne ayant (n—1)

composantes, d est un ¢lément de P'anneau de base tel que d-deta soit

inversible dans cet anneau; on définit les séries d’Eisenstein de la maniére
suivante
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PROPOSITION 6. Pour x e G(A,), © un quasi-caractére de A tel que

lo| = 0,, o©eR,
la serie
E(p,x,0) = )  M(o, yx, »)
yeP(k)\G(k)

converge pour o > 1, on lappelle la série d’ Eisenstein associée a la fonction
¢ de L(V(AY).

Enongons d’abord le résultat suivant:

LEMME. L’intégrale
I, = J el Y ) | dul)
K*\Ap EeV (k) — {0}
est convergente si ¢ > 1.

Démonstration. Comme la fonction ¢ de #(V(A,)) est quelconque, on
peut supposer x = 1.

A) k de caractéristique 0.

Soit P, I'ensemble des places infinies de k, on pose:

QP,) = [] kX[ r>.

veP ug_&Pw

On sait que le groupe Q(P.)-k*\A, est fini, isomorphe au groupe (,
des classes d’idéaux de k. Soit Y un systéme de représentants dans A
du quotient Q(P_)-k*\A, ; lapplication canonique de Y -€(P,) dars
k*\A, est surjective.

Supposons qu’un élément o de k*\A [ s’écrive de deux maniéres distincte. :

A = Y0y = y0,,
avec
Vi,V,€Y et o;,0,eQP,).
Alors il existe o dans k™ tel que
Ay;0; = Y203,

ce qui entraine I’égalité de y, et y, car ce sont des représentants d1!|
quotient k* - QP )\A " . Ainsi
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cest-a-dire aer’™, r désignant I'anneau des entiers de k. On a donc un
isomorphisme

Y r*\QP,) > k™" \A; .

L'intégrale I, se réécrit
g 1

n

I =} Iyt 2 eyl due)
yeY J ter \Q(P ) teV(k) — {0}
< ) [yl X leEyn)|du@).
yeY J teQ(P ) EeV(k) — {0}

La fonction ¢ étant quelconque, on se borne a étudier la convergence de

f Y leEn ]l t]ne du),

teQ(P ) &eV (k) —{0}

ou encore celle de

L= ) j | O(&0) |+ ]| du(r),
EeV (k) —{0} teQ(P )

ce qui se réécrit

(1) 12 = E_,eV(g—{O} l: H Iu(&). H JU(EA):I s

vePOo véePOO
avec
I1,(€) = f N OUEL) [, 172 dpy(e,)
tyek,
Jo8) = f L euEt) - duyt,),
tuerv
et

[t ], =121 si k, =R,
=|t,|* i k, = C.

Comme dans la démonstration de la proposition 2, on note K, le support
de la fonction @,, ¢, entier tel que

—c,
K,cmn, .pn

v -
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De plus, on note o, la fonction caractéristique de m, - r} et M, le réel
positif défini par

M, = sup | @, x)|

xeV(ky)

(I'entier ¢, est nul et le réel M, vaut 1 pour presque toutes les places
finies v). Alors

2) [17.<11 M,;J (L)L) -
vgP vEP tuer,,
Donnons une condition sur  pour qu’en toute place finie v, &t, e m, - r).
Soit f = [] I=n,|, €N < r (r anneaux des entiers de k), alors
vésPOG
| fle =17, 1575

on a les équivalences successives suivantes:
Eoen, ery= 8], <Im |, = 8], < | fl, =] fEl, < 1< fElery;

et on en déduit que &t, sera dans m,  r) pour tout v fint si et seulement
si&e f71r SiE¢ f1 " l'une au moins des intégrales J,(E) est nulle et il
suffit donc, dans la définition de I,, de sommer sur les £ € f'r". On en
déduit alors de (1) et (2) la majoration

L< ¥ ( Lo 1 M, j xduv<rv>>,

E,ef"lr" UEPOO UéPOO

puis

12<<H MM) 2 [H Iv(i):l,

vésPoo Eef ~ 1rn ueP00

ou m, est le réel positif défini en I11.1.
Mais les fonctions ¢, ou v est une place infinie sont a décroissance rapi €
donc:

[11e< I CJ DTN g1 di,)

vePOO veP tuek,,

ouna =1sik,=R, ao=2s1k,=C.
On fait le changement de variables suivant:

i T o
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si v est une place réeelle: u, = | &\l -t,,
si v est une place complexe: u, = || E*-t,,
alors | u, |kv =&t lku de sorte que

15L& <1el™™ ] Cuy J )7y 1 du(w,)

veP veP uyek,,

ou d désigne la dimension de k sur Q.
— Si k, = R, lintégrale correspondante dans le produit se réecrit:

~ dt
J (L)) N[ t]™—
teR * |t|

intégrale qui converge a linfini si N est choisi assez grand et en 0 si
ag> 0.

— Si k, = C, I'intégrale se réecrit:
2J 14z V.| z|?™ 2dxdy = 2 J J (1+p3)~¥.p?"~1dp do
zeC* pJ B

— 4th (1+p2)—N. p2nc—1 dp,
p

intégrale qui converge a l'infini si N est choisi assez grand et en O si
2no—1 > —1 cest-a-dire si o > 0.

Il reste @ montrer la convergence de la série

2 e = Y ST = S Y T

Eef ~1rn Eern Eern

on est donc ramené a la convergence de

P3N RS oy

Eern

Si la norme utilisée est la norme définie par

H & H = sup l &i l pour E.) = (gl 3 ey E.vn) 5

on obtient les égalités suivantes:
LIEI ™™ = % suplg |
Eern E1,.ony Endern i

= Y sup|zio, + .. + ziw, | ~"?,

zeZnd |
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avec z = (21, 23,2, . 2h), €t (@4, .., ®;) est une base fondamentale |
Co
du Q-espace vectoriel k. Ainsi |

2 e < oy |74 Y sup |z + o+ ozg T,

Eern zeZnd |

ou ;, est un ¢lément de la base fondamentale tel que

|, | = sup |o;].

i=1lan
On a encore les majorations suivantes:

Z H i ” —nod < I(Dio I - nod Z d—ncd sup Sllp | Zj- ' —nod

tern zeZnd i J
= [doy, | "™ Y sup|z§[ =
zeZnd |, j
= |do, | 7" Y fz | 7",
zeZnd

On sait que la série | z || ~"°* converge pour ¢ > 1.
q g p

zeZnd

B) k de caractéristique p

On suppose que k est une extension algébrique de dimension finie du
corps F,(T). Pour chaque place v de k, k, est de caractéristique p et si x
est un élément de k., le nombre | x|, est dans le sous-groupe I', de
R engendré¢ par p. La méme chose est vraie pour le module |z|,,
ou z est un élément de A, . L’image de A, par le morphisme z |z |,,
est un sous-groupe non trivial du groupe I',. Supposons qu’il soit engendré
par un entier Q = p~ avec N entier > 1.

Choisissons z; dans A, tel que: |z, |,, = Q. Alors A, est le produit
direct de A} et du sous-groupe noté I' engendré par z, évidemment iso-
morphe a Z. D’autre part, on pose "

Ap) = []r,,

on sait que le groupe quotient Q(d) - k“\A} est fini. C’est le groupe isomorphe
au groupe des classes de diviseurs de degré 0. (Voir [6], p. 97).

Soit Y un systéme de représentants dans A, de ce quotient; Papplication
canonique de I' - Y dans Q(¢d)- k*\A, est bijective et on a également un
isomorphisme

kK \AY - T Y(QP)nk ™\ QD))
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ou encore
K \A) - T+ Y(F\Qd)),

ou F, est le corps des constantes de k cest-a-dire le corps fini maximal
contenu dans k. Ainsi lintégrale I, se réecrit

yeY meZ teV (k) —{0}

I =) ) j lzp e Y, TeEzTy) | dud)
(eF\2(0)

yeY meZ teV (k) — {0}

<Y ) J 270 Y 1 e@zTyn) | du()
1eQ($)
La fonction @ étant quelconque, on se borne a étudier la convergence de

ZJQ(¢)Ilexi- Yo leEzTt) | du),

mel EeV (k) — {0}

ou encore celle de

L=y lz % X J Q(‘ml(P(iZ’{‘t)ldu(lf)

meZ EeV (k) —{0}

NN D) HJ &zt [ty

meZ EeV(k)—{0} v tyer,

ou z, , désigne la composante en la place v de l'idele z; .
Déterminons un idéle z, particulier; on le choisit tel que: z; = (z;,)
avec z; , = 1 pour v # Vg, Z; ,, = T,,, Vo €tant une place quelconque de k.

Alors l'intégrale I, se réecrit:

L=y (l T, ™Y [.,H J 8- f x 1mvo(az,,on::;)Idu,m(rvo)]),

meZ EeV (k) —{0} Fvo %o

ou comme précédemment J,(§) désigne 'intégrale

J®) = j e |- dut).

v

01} suppose toujours que @ = [] @, est une fonction décomposable de
#{V(A)) et que, pour toute place v, | @,| < M,5,, ol o, est la fonction
caf'actéristique de m, - ri. Pour que le produit contenu dans I’expression [
soit non nul, il faut que I'¢lément & de V(k) — {0} vérifie les conditions
Suivantes:
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HE.'HU< |nv Iv pOur 0#007
<

(RIS

_v—m|
'|TCUQO vg

Posons
L,=p,%, Ly, =pPy™™, et L,=(L),;
alors L, est un systéme cohérent de k,-réseaux de rang 1. (Voir [6],
p. 97).
Soit A(L,) = kn ([] L,), A(L,) est un espace vectoriel sur le corps F g

des constantes de k dont on note sa dimension A(L,). (Voir [6], p. 97).
Le produit contenu dans I, est non nul (pour m fixé) si et seulement si

& € A(L,,).

D’autre part, soit a,, le diviseur associ¢ au systéeme L,,:

am = Z CUU + (Cvo+m)UO;

vFvo

on sait que si son degré

dega, = ) c¢,degv + (c,,+m)deg v,

vFvg

est strictement négatif, c’est-a-dire si

m<—c,, — (degvg)™'+ > c,degv = M,

vFvo

alors AM(L,,) = 0 (voir [6], p. 100).
Il suffit donc dans l'expression I, de sommer pour m > M de sorte que

Zg(HMvmv) Z |nvolmno' Z (1)

m=2M EeA(Lm)"—{0}

On doit étudier la convergence de

Z | Ttvo Imnc (an(L'm)_ 1) )

m2M
Sachant que pour m assez grand, le théoreme de Riemann-Roch donne
I'égalité

}\‘(Lm) = degam_g + la

ol g est le genre de k (voir [6], Cor. 2 du Théoréme 2, p. 101), on est |
ramené a la convergence de N

—mno deg vg ,nmdegvo __ deg vo(1l —o)mn
Y q q = 2 4 :

m2M m2M
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Cette série converge pour ¢ > 1.
Le résultat de la proposition 6 se déduit alors de:

PROPOSITION 7. On a légalité

E(p, x, ®) = J ) o(det tx) - Y o(Erx)du(t)
k*\Ay

geV (k) — {0}
pour @ quasi-caractere d’exposant © > 1.
Démonstration. On construit 'application suivante:
P(k)\G(k) x k™ - V(k) — {0}
(v, u) = eu v,
ou Y, est une matrice dans la classe de y dont le premier élément non
nul sur la derniére ligne est égal a 1.

Puisque cette application est bijective, on peut écrire la série absolument

convergente  »  ¢(&tx) comme
gev () - {0}

¢ (eu yo 1x),

uek ™ yeP(k)\G(k)

et par suite

f o(dettx)- Y o(Etx)du(r)
k*\Ap EeV (k) — {0}

”

= Y2 ofdet tx) olewyotx)du(t)

J kx\AkX uek * yeP(k)\G(k)

.
= Y o(det tx) g(et v x)dp(t)

J AL veP(O\G(k)

= > J _ o(det tx) (et o x)dul(z)
YeP(\G(K) J A,
puisqu’on a ici convergence absolue. Mais l'intégrale

M(e, vox, w) = J . Pt yo x)o(det rx)dp(t)

Ay

ne dépend pas du représentant choisi dans la classe vy de P(k)\G(k), ainsi
~ On a bien
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J a(det tx): Y o(&rx)du(r)
K*\Ap geV (k) — {0}

~ ¥ J a(det tx) e(et yx)dp(t)
YePUNG(R) ) A

= E(op, x, ®) .

Chapitre 1V

LE PROLONGEMENT ANALYTIQUE DES SERIES D’EISENSTEIN

Dans la suite, k désigne un corps global, E une extension de dimen-
sion n sur k et V(k) Pespace vectoriel sur k sous-jacent a E.

1. LA FORMULE DE POISSON

Soit y un caractere de A, non trivial, trivial sur k et soit (x, y) Ia
formule bilinéaire symétrique sur V(A,) non dégénérée définie par

(x, y) = Tr(xy),

ou Tr désigne la trace absolue Trg,; alors on peut identifier V(A,) ave:
son dual topologique par l'isomorphisme qui a un ¢lément x de V(A.
associe le caractere y(x, y) de V(A,).

Soit o la mesure de Tamagawa de A, pour laquelle le quotient E\A
est de mesure 1, avec I'identification précédente; la transformée de Fourie
d’une fonction @ de #(V(A,)) est définie par

oy) = j o(x) 1%, y) dafx),  pour  ye V(A,),
V(Ax)

et la formule de Poisson pour le sous-groupe discret a quotient compac
V(k) dans V(A,) s’écrit

Y ooex)= Y o) pour ¢eF(V(AY),

xeV (k) yeV (k)

I'orthogonal de V(k) s'identifiant a V(k).
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PROPOSITION 8. Soit @ une fonction de F(V(A,)); on pose

0o, x,0) = > o)

gV (k) — {0}
pour x € G(A;) et t € A} ; alors
0(, x, 1) + @(0) = | det tx | ,' (B(, X717 + @(0)),

ou X designe la matrice adjointe de la matrice x pour la forme bilinéaire
(a, b):

(ax,b) = (a,b,X), a,beV(A)).
Démonstration. On pose

V(G = oEtx)  pour £ e V(Ay);

alors V(n) = f O(Etx) x(&, n) doyE) .
V(Ax)

Si on fait le changement de variables £ — s = &t, on obtient

Yy = [t J @(sx) x(st™ 1, M) dofs) .

V(Ax)

' Posons encore z = sx; alors

Y(n) = | det tx | 5} f 0(z) x(zx~ 't ™1, m)do(z)

V(Ay)

= | det txlxk“j o(z) x(z, nt ™ X7 V)da(z)
V(Ax)
= |dettx |, oMt x Y).

Appliquons la formule de Poisson:; on obtient équivalence des égalités
suivantes :

> oWE) = Y (n),
EeV (k) neV (k)

@, x, 1) + @(0) = [ detex |5} Y Qe %Y,

nev(k)

09, x, 1) + @0) = |det tx |5} (6(¢, X1, t~ ")+ ¢(0)) .
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2. LE PROLONGEMENT ANALYTIQUE ET L’EQUATION FONCTIONNELLE
DES SERIES D’EISENSTEIN.

Définissons une relation d’équivalence sur les quasi-caractéres de A, :
on dira que deux quasi-caractéres sont équivalents s’ils coincident sur les ideles
A} de module un. Sachant qu’un quasi-caractére trivial sur A} est de la
forme | a |°, s e C, une classe d’équivalence est constituée de tous les quasi-
caracteres de la forme w(a) = wy(a)+|al’, ou w, est un caractere de A,
représentant fixé de la classe et s un nombre complexe déterminé de maniére
unique par ®. On a donc paramétris€ une classe d’¢quivalence de quasi-
caracteres par une variable complexe s et on peut identifier cette classe avec
un plan si k est de caractéristique nulle et avec un cylindre si k est de
caractéristique p.

Choisissons une mesure de Haar sur A, ; sur le groupe compact
k*\A}l, on choisit la mesure de Haar p, telle que p;(k*\A;) = 1.

Soit N le groupe tel que 'on ait la décomposition

KX\AY = k*\A; x N;
on definit une mesure p, sur N par

d
dum) == i N =R,
n

et uy({1}) =1 si N estisomorphea Z.

Sur le groupe k*\A;, on considére la mesure produit p = p; X p,.
Enfin, sur A, on choisit la mesure p dont I''mage dans le quotien:
k*\A . est la mesure définie précédemment. On sait d’apres le chapitre
précédent que la série E(o, x, ®) est holomorphe sur I'ensemble des quasi-
caractéres o de la forme wy(a)-| a|®* avec Re s > 1. Le prolongement analy-
tique et I’équation fonctionnelle des séries d’Eisenstein sont donnés par la

PROPOSITION 9. On peut prolonger analytiquement les séries E(@, x, ®;
a lensemble de tous les quasi-caractéres. Soit X, (A;) le groupe des quasi-
caractéeres dordre n de A}; la fonction prolongée est une fonction
méromorphe dans C et holomorphe sauf si ®e x,(A;) ou si oa
= wo(a)-| a| avec g€ x,(A}); elle admet respectivement en ces points un

pole simple de résidu ip(p(())co(det X) et un péle simple de résidu
n

1 A~ o~
— — po(0)o ~(det x) avec
n
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p=1 si k de caractéristique O,
p=(»ogQ®)™ " si N={0%ez-

Enfin la fonction prolongée vérifie 'équation

E(p, x, ®) = E(@, X%, &),
ou @ estle quasi-caractére de A,  défini par
) = |t]-o ).

Démonstration. On décompose la série E(@, x, o). Les ideles de module un
k*\A} étant de mesure non nulle, on ne peut pas écrire E(p, x, ®) comme
la somme d’une intégrale sur les idéles |t| < 1 et d’une intégrale sur les
idéles | t| = 1. Il faut donc choisir sur R %, deux fonctions continues F,
et F, avec les propriétés suivantes:

(I)F()ZO, F1>O, F0+F1:1

(i1) Il existe un intervalle compact [t,, t,;] dans R tel que

Fo(t) =0 pour O0<t<ty,
Fi(it)=0 pour t>rt,.

On demande de plus que

Fo(t) = F,(t™') pour tout t;
pour cela, on choisit pour F; une fonction continue définie sur t > 1
avec

et Fy()=0 pour t=1t, > 1.

Enfin, on pose

Fit)=1—F,¢t™") pour O0<t<1
et Fo=1—F,.

Alors la série E(o, x, w) peut s’écrire comme une somme E — Ey, + E, avec

Eoo, x, 0) = kax o(det tx) 8(@, x, 1) Fo(|t]x,)dn(t)
k

Ei(o, x, 0) = f , @det x) 8, x, 1) Fy(t],,)dn(z) -

k*\Ay
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L’intégrale E(¢, x, ®) est une fonction entiére définie sur 'ensemble de tous
les quasi-caracteres.
Choisissons B > 1. PourceR, 0 < B,teR}, ona

t"Fo(t) < the™B . B

Ceci donne la majoration suivante:

J L detex 3% -1 8(q, x, 1) | - Folltla,) dp(t)

k*\Ay

< t'é‘“—B"J detx (o[ ]50 - 6(e, x, 6) | du(t) ,

k*\Ag

intégrale qui converge d’aprées le lemme de la proposition 6 du chapitre III.
Ainsi, on obtient la convergence uniforme de E (@, x, ®) sur tout compact de
C et Papplication ® — E,(o, x, ®) est holomorphe.

On exprime a présent lintégrale E, en fonction de l'intégrale E, en
utilisant la formule de Poisson. Pour cela, on fait le changement de variables
t+— t~ 1. Ce changement transforme la mesure de Haar p en une mesure
de Haar cp, ou ¢? = 1 puisque c’est un homéomorphisme d’ordre 2 de
k*\A; , donc ¢ = 1 et on obtient

El((p> X, (D) = J 2 0‘)(det t 1X) * e((pa X, t 1)F0(|t|Ak)du(t)
k*\Ay

= E,O((p> X, (D) + Rl((p, X, (D) - Rz((P, X, (D) s

avee

Eo(o, x, ) = J o(det £~ x) « | det 7 x | 5.} 0(¢, X 71, 6)F o(ltl, )dp(2), i

% x ¥
k*\Ay !

Ry(p, x, w) = CP(O)'J _o(det t77x) « [det t7 x| 1+ Folltla,Jdne) , |
kX \Ay,

Ry (¢, x, w) = ¢(0) j _o(det t71x) FoJtla)ap(t) .

H

i

k*\Ag %

Soit T la matrice de G(A,) telle qu’on ait ’égalité
(a,b) = (aTlb),

ou (alb) désigne le produit scalaire euclidien a-'b sur V(A,); les matrices x
et X sont reliées par la relation

1
(TUx T = % id
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de sorte que les déterminants de x et X sont égaux et
Eo(9, x, ®)

= J o7 (det tx 1)+ [ det X T [, - 0(, X 7Y, OF o[t )dR()
k*\Ay

Soit & le quasi-caractere de A,° défini par

o) = [t]- o ' (1);
alors Ey(o, x,®) = Eo(@, X1 D).
D’autre part, si le quasi-caractére ® s’écrit

o) = o) - 1]°,

ou ®, est un caractere fixe, représentant de la classe de o, les intégrales R,
et R, se réécrivent

Ry(, x, ®) = ¢(0) - f d(det tx ™) Fo([t] o, )dnt)

kK \Ap

= ¢(0)d ~*(det X)f . w61(t")du1(t)'J [ £1Re ™ Folltla)dna(tl)
N

k*\Ag
et
R, x, o)
= ¢(0) w(det x) J 00 (1M (8) - f | 214« Folltla)dp,(I) -
k*\Aj N
L'intégrale jkx\A o "(t)du(t) vaut 1 ou O suivant que o} est trivial ou
k

non sur A, . Notons 8(w,, n) ce facteur, alors

Ry, x, @) = ¢(0) &~ (det x)3(wo, n)'[ | 1% 77+ Folltladua(t))

N

et

Ry(¢, x, ©) = ¢(0) o(det x) §(w,, H)J |t 14"+ Folltla)dpa(]t)) -
N

Si on note

Ms) = JN | 1% Fo(ltla,)du,(t) ,
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on obtient
Ry (o, x, ®) = @(0) &~ *(det x) 8wy, n) Mn(1l —53))
et
R,(9, x, ®) = ¢(0) o(det x) 8(wg , 1) A(—ns) .

En utilisant [6] lemme 6, §5, chap. VII, p. 121, il s’ensuit que E(o, x, o)
est une fonction holomorphe sur ’ensemble de tous les quasi-caracteres sauf
en w(a) = wy(a) et o(a) = wy(a)*| a| lorsque w, parcourt I'ensemble X ,(A})
des quasi-caractéres d’ordre n sur A}l; en ces points, la fonction E(, x, ®)

1
admet respectivement un pole simple de résidu — p(0) w(det x) et un pdle
n
simple de résidu — — p(0) & ~(det x) avec
n

p=1 si kde caractéristique O et
p=(logQ)~" si kde caractéristique pet N = {Q"},.z -
Enfin, en ce qui concerne I’équation fonctionnelle vérifiée par la série
E(op, x, ®), on a
E((-p’ X, (D) = EO((Pa X, ('0) + El(@) X, 0))
= EO((Ps X, (D) + EO((BJ 56 - 1> (b) + 6((’00 s n)[(/b(o)é\) - l(det X)X(n(l _S))
+ o(0)m(det x)A(ns)],

de sorte que

E@,%x L 0) = Eo(e, X 1L, ®) + Eo(op_, x, ®) + 8w, n)[@O)n(det x)A(ns)
+ @(0)d ~Y(det x)Mn(1—s))] ,

ou la fonction ¢ _ est définie pour & € V(A,) par

0_(&) = o(=9).

Comme Eq(o_, x, ®) = Ey(o, x, ®), on obtient pour equation fonctionnell
vérifiée par les séries d’Eisenstein

A

E(@, x,®) = E(@,x %, d).
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Chapitre V

CALCUL DES INTEGRALES TOROIDALES DES SERIES D’EISENSTEIN

On désigne toujours par k un corps global, par A, les adeles de k,
par E une extension algébrique de k de dimension n et I'espace vectoriel
E,.. sous-jacent a E est note V(k).

On rappelle que I'on a le diagramme d’isomorphismes commutatif suivant:

(EQAY”

Soit p; la mesure de Haar sur le groupe des ideles de Ag; on note
iy la mesure de Haar du groupe multiplicatif T(A,) transportée par l'iso-
morphisme v~! ainsi que la mesure induite sur le quotient T(k)\T(A,).
On note de plus p la mesure de Haar sur chacun des quotients k*\A
et Z(k)\Z(A,).

Il existe une unique mesure de Haar notée dp,; sur le quotient
T(k)Z(A)\T(A,) telle que pour toute fonction f € #(T(k)\T(A,)), on ait

j J S(xE) dp(€) duz (x) = j f(X¥)dpr(x) .
TRZAN\TAW J Z(Kk)\Z(Ak) T(RN\T (AW

On calcule a présent lintégrale des séries d’Eisenstein sur le tore
TkZ(AYD\T(Ay). Soit g dans G(A,), ¢ dans F(V(A,) et ® un quasi-
caractére de A, ; on a les égalités suivantes:
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J‘ E((P, tg) 0‘)) duZ\T(t)
T(k)Z(A)\T(Ak)

= J J § w(det z tg) Z @&z tg) du(z)duz 1(t)
T(kK)Z(A\T(Ak)

k>*\Ay EeV (k) — {0}

=J o(dettg) >, o(Etg)dp(r) .
T(k\T(Ak)

gV (k) — {0}
En observant que si t est un élément de T(A,), on a I’égalité

I'intégrale précédente devient

o(det g)f Y 0Etg) - o Npy(t)) dpe(t)

E*\Ap &€E*

= w(det g) - J y P(tg) - (N g (1) dpglt) .

AE
Pour ¢ une fonction de #(V(A,)) et ® un quasi-caractére de A, on pose

e, ©) = J . ()o(t) dyg(t)
A

E
et o t) = o(tg) pour geG(A;

on a démontré:

THEOREME 1. Soit k un corps global, E une extension algébrique fin:
de k de dimension n, g wune matrice de G(A,), ¢ une fonction d>
F(V(A)), © un quasi-caractére de A, ; on a lidentité suivante:

J E(o, tg, ®) duz 1(t) = o(det g) - Lp,, ® o Np,) .
T(k)Z(AK)\T(Ax)

Remarque. L’intégrale

J\ E((pa tga ('0) duZ\T(t)
T(k)Z(Ax)\T(Ax)

est appelée une intégrale toroidale de séries d’Eisenstein.
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Chapitre VI

LA FORMULE INTEGRALE DE HECKE

Le but de ce chapitre est d’utiliser la formule établie dans le théoréme 1,
dans le cas particulier ou k est le corps Q et E un corps de nombres
sur Q, afin d’obtenir la formule intégrale de Hecke classique (Réf. [H]).
Dans un premier paragraphe on construira une application de 'ensemble des
matrices G(Q)Z(A)\G(A) dans 'ensemble G(Z) - Z \G(R) des matrices reelles
et on calculera 'image par cette application du tore T(Q)Z(A)\T(A). Dans
le deuxieme paragraphe, on utilisera cette application pour retrouver la for-
mule de Hecke a partir de l'identité du chapitre précédent (Théoréme 1).

1. LA PROJECTION DE G(Q)Z(A)\G(A) SUR LA PLACE A L’INFINI

A. La projection m,: G(Q)Z(A)\G(A) » ZOOG(Q)\G(A)/G(Z)

L'ensemble Z_ désigne le sous-groupe de G(A) constitué des matrices z
telles que z,, soit une matrice scalaire non nulle et z, est la matrice identité
pour tout nombre p premier.

Soient M € G(A) et z € (A) avec

ou pour p fini, on exige que z,e L, pour presque tout p et z,€Q,
pour tout p.

Soit § Pensemble des nombres premiers p tels que z,¢Z, et soit p
un élément de S, il existe un entier n, verifiant

prrz, el .
Soit Q la matrice scalaire de Z(Q) dont les éléments diagonaux valent

[} pme: Z(Q est une matrice de Z_, - G(Z).

pes
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Soit (ZQ), la matrice adélique coincidant avec ZQ aux places finies
et égale a 1 a la place infinie, et (ZQ), la matrice adélique égale 3
Z .0 a la place infinie et égale a 1 aux places finies; on a la décomposition
suivante:

ZM = Z7ZQ-Q 'M
= (20), - (2Q);- Q™ 'M
= (2Q)., Q" 'M(ZQ);, .
Ce qui précéde montre que la projection m; qui a un ¢lément de

G(Q)Z(A)\G(A) fait correspondre la classe dans Z G(Q\G(A)/G(Z) d’un
représentant quelconque de cet élément, est bien définie.

B. Il y a une bijection m, entre G(Q)\G(A)/G(Z) et G(Z)\G(R)

En effet, on considere lapplication de G(R) dans G(Q)\G(A)/G(Z) qui a
une matrice g de G(R) associe la classe de (g, 1, .., 1,..) dans G(Q)\G(A)
/G(Z). Cette application est surjective puisquon a la décomposition bien
connue de G(A): |

G(A) = G(Q)- G*(R)- G(Z)

(voir par exemple [5], pp. 143-146 pour le cas n = 2 et la démonstraticn
est la méme pour n quelconque).

Supposons que les matrices g et g’ aient la méme image. Alors on a
une ¢galité

vgk = v g' k',
avec vy, Y € G(Q) et k, k' e G(Z); par suite
Yy =gkkTlg Tl =gg kKT

Mais lintersection G(Q) n G(R) - G(Z) est réduite a G(Z); cela entralie
I'existence d’un élément o de G(Z) tel que

Y =yo, g¢g=o0g, k=ok.

Ainsi g et g ont la méme image si et seulement si ces matrices so t
congrues modulo G(Z). On a démontré:

ProrosiTiON 10. L’application m, o1, ou

n,: GQZ(ANG(A) ~ Z,,G(Q\G(A)/G(Z) L
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el
n: Z,GQ\G(A)/G(Z) - Z(R)G(Z)\G(R)

sont définies comme précédemment, nest autre que la projection canonique de
GQ)Z(A\G(A) sur Z(R)G(Z)\G(R).

C. L'image du tore T(A) dans Z(R)G(Z)\G(R)
L'image de T(Q)Z(A)\T(A) dans Z_G(Q)\G(A )/G( ) est

Z,T(Q\TA)/TZ).

Dans le cas particulier ou l'on considére un corps de nombres E sur Q,
muni d’'une base fondamentale (®,, .., ®,), on déduit de la proposition 3
du chapitre II et de la remarque qui suit qu’il y a un isomorphisme v
de T(Q)\T(A)/T(Z), sur E"\AE/(H r,), ou rﬁAdésigne le sous-anneau
compact maximal de E,. Ainsi Z,T(Q)\T(A)/T(Z) s’identifie a I'ensemble
R -E\AF/]r 4) qui se projette dans le groupe des classes d’idéaux
de E

ELENAZ[]r))

ou on a not¢ E, le produit des complétés aux places infinies [] E,.

vePOC

Soient h le nombre de classes de E et (a)) un systeme de représentants

Fj=t1an’
de ces classes dans A, on a une bijection

ENA/(Tr) - U a-(RMNEY).

j=lah

En combinant cette bijection avec I'isomorphisme

Z,TQ\T(A)T(Z) > R* - E\A/([]r))

on peut écrire
Z.TQ\TAYTZ) = |J H;(Z.,T@)\TA)),

ou la réunion est d1SJomte et ou la classe de la matrice H;e T(A) dans
T, (A)- (Q)\T(A)/T(Z) correspond a la classe de lelement a; de Ajg
dans EZ - EX\AZ/(['] ). On choisit de plus H; telle que

(H), = 1.

On cherche & présent 'image du quotient ZOOT(Q)\T(A)/T(Z) dans
Z(R)G(Z)\G(R). Si on note h; 'image de la matrice H; dans Z(R)G(Z)\G(R)
Aloss limage de Z,, TQ\T(A)/T(Z) est |J h{Z(R)T(Z)\T(R)).

j=lah
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Reste & déterminer un systéme de matrices ;. Pour chaque élément a;

de A7 dans le systeme de représentants des classes d’idéles, on note
a; = [o,;,...,%,;] un idéal de E dont la classe correspond par I (voir la
proposition du chapitre II) a la classe q;.

Définition 1. On note P; I'élément de G(Q), matrice de passage de la base
fondamentale (®,, .., ®,) de E a la base [a,;, .., a,;] de I'idéal a;, dont la
i¢ ligne est constituée des coordonnées du vecteur «;; dans la base
(©q, ., ©,).

D’autre part, on a le diagramme d’isomorphismes commutatif suivant
deduit de la proposition 4 du chapitre II

EXNAG(Tr; = TJAN\TAYTZ) < G.(A\GA)GZ)

1

Ig | Ir | Ir |t

~

Idéaux de E

i

Q7! (ldéaux de E) < Réseaux de Q"

Le réseau image par I de la matrice (1, P;, ..., P;, ..) de G(A) est le réseau
associ¢ a l'idéal a; par l'application Q~'. En effet, quelque soit la place »
finie, les vecteurs qui engendrent le réseau (rj- P;) ont pour coordonnées
dans la base canonique les coordonnées de a;,..,a,; dans la ba:z
(@1, .y ©).

On en déduit que

nj

H;, = (L[[(H), = 1, P, .., P;,..) mod G(Z)

p

et par suite la matrice h; est I'image de (1, P
cest-a-dire P '. Par suite:

. P;,..) dans Z  G(Z)\G(R:,

j,..

ProPOSITION 11. L’image du tore Z  T(Q)\T(A)/ T(Z) dans
Z(R)G(Z)\G(R)

h
est la réunion U P; '+ (Z(R)T(Z)\T(R)).

j=1
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7. LA FORMULE INTEGRALE DE HECKE

On suppose toujours que E un corps de nombres sur Q. En choisissant
pour ¢ la matrice identite, la formule adélique donnée dans le théoréme 1
du chapitre précédent devient

J E(p, x, ®) dHZ\T(x) = (o, (DONE/Q) .
T(Q)Z(AN\T(A)

On définit le quasi-caractére ® de A*/Q™ de la maniére suivante:
oft) =|t|y, teA”,
avec se Cet o = Res > 1.
Ainsi
®o Ngolt) = |t|y,, teAg.
On définit la fonction @ de ¥(V(A)) par
¢ = ]]o,
avec, pour les places finies,
0ty = 1u,(t,), L,eE®Q,.

ou ¥, est la fonction caractéristique du reseau L, engendre dans E ® Q,
par la base fondamentale (®,, ..., ®,) de E sur Q.

On note p, comme au chapitre II, I'isomorphisme de E ® Q, sur

[[E; le réseau L, ¢étant engendré par une base fondamentale, on a
#lp

up(Lp) = l—[ r/l )
#lp
de sorte que
on,t =1 XV s -
#lp

Pour la place infinie, on pose

P () =e ™Y, teEQR,

avec la fonction F déﬁnie‘par

ri ry+ry
F(t) = ,Z oi(t)* + 2 ZH |olt) 12,

O (0;);<;<,, désignent les r; plongements de E dans R, (o)

i/ry+1<isri+ry
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les r, plongements de E dans C non conjugués deux a deux et

Gr;+r2+i = Gr1+i pour ]‘ < i S r2 .

La fonction F peut également s’exprimer pour un élément t = t,0; + ..
+ t,0, de E ® R de la maniére suivante:

rl - .
F(tyo, +..+t,0,) = > (t,oP+..+t,0P)?
i=1

r1+r2 . N . - tnl
+2 Y t,0fP + .+ 6,097 = (t, . t,)A A : ,
i:r1+1 t

ou on a noté¢ ' = ofw;) et A la matrice

ol .. oW

o® .. o®

n

Enfin, on note comme au chapitre V:

pg la mesure de Haar sur A; obtenue en prenant py = [[p, avec
dx

w,(r,) = 1 pour toute place finie 4 de E, du,(x) = x| pour les places
X

réelles de E et du(x) = | x| ~%.|dx A dx| pour les places complexes de L,
iy la mesure de Haar sur T(A) et T(Q)\T(A),
i la mesure de Haar sur A*, Q*\A™ et Z(Q)\Z(A),
2 r la mesure de Haar sur T(Q)Z(A)\T(A) .

A) Calcul de (o, (DONE/Q)

Pour o > 1, on a les égalités suivantes:

Ag

L, @ Ngq) = j L P@) |t lhg dug(t) = I;IJ st 1, 1P dt,)
E
#

(cf. [6], Prop. 10, p. 119).
Alors en utilisant [6], Prop. 11, p. 120 et lemme 8, p. 127, on obtien

{9 @oNpg) = n7H2 r(%) @y ey T (=)

# fini

ou n, désigne une uniformisante de E,. Notons
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G (s) = n "2 F(%) - (2m)2 T T(s)s

alors
(@, @°Ngig) = Gools) * Cels)

ou {; désigne la fonction zeta de Dedekind de I’extension E.

B) Calcul de l'intégrale toroidale

Dans la suite, on notera I I'intégrale toroidale:

I = j E(o, x, ®)duz r(x) .
T(Q)Z(ANT(A)

On a vu que I'image par m, du quotient (T(Q)Z(A)\T(A)) est
2. TQ\TA)T(Z)
Mais ce groupe est isomorphe au quotient suivant:

(TQ)Z(ANT(A)T(Z)/Z(2))

LEMME. Soit & un élément de G(Z); alors
E(p, x§, ®) = E(o, x, ®) .
Démonstration. On a

E(p,x,0) = > Mo, yx, o)
yeP(QN\G(Q)

et

M(o, x, ®) = IdetXIi’j oet x) - | £ |X du(t) .

A

Il suffit de montrer
M((P’ X, ('0) = M((Pa XE_,, (D) .

Mais £e G(Z) donc |det&|, = 1; de plus en chaque place finie p,
S, € G(Z,) donc et,x, e L, si et seulement si et,x,£,€ L,, ce qui prouve le
lemme.

p’

Le groupe T(Z)/Z(Z) étant compact, on choisit une mesure de Haar
sur celui-ci de maniére a ce qu’il soit de mesure 1. Si on prend sur le
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groupe Z, T(Q)\T(A)/T(Z) la mesure quotient notée fiz\r, on obtient comme
nouvelle expression de l'intégrale I

I = J‘ ~ E((Pa X, (D) dllZ\T(x) 5
Z,,TQ\T(A)/T(Z)

puisque la série E est invariante par 'action de T(Z).
On a vu que le quotient Z_ T(Q)\T(A)/ T(Z) s’écrit comme une réunion
disjointe

b

U {Z(R)T(Z)\T(R)).

Notons py_ la mesure induite par pzr sur le quotient Z(R)T(Z)\T(R);
alors

I = J i E(p, Hjx, o)dpr (x).

ZR)T(Z)\TR) j=1

Pour chaque indice j de 1 a h, les matrices H; et (h;,1,..,1,.)
= (P; %, 1,..,1,..) sont dans une méme classe de G(Q)\G(A)/G(Z). (Cf. la
remarque au-dessus de la proposition 11).

Comme les séries E sont invariantes par I'action de G(Q) a gauche et de

G(Z) a droite, on obtient
h
I = f Y. E(o, hyx, o)dur_(x).
ZR)T(Z)\TR) j=1

On calcule a présent les séries E(op, x, ®) dans le cas particulier o
x = (x,, 1, .., 1). Alors

E(@4(Xe, 1, ooy 1,-..),w)=ldetxoo|s'J [tIx - ) @Emx)du()
Q*\A~

£eV(Q) — {0}

= | det x, |° | 21X+ @(Erx)dp(r)

EeV(Q) — {0} jRI‘HZ*
P

+ oo d
= |detx, [*+ D (J‘ 1@ (EEx )7 I J . (pp(ét)dup(t)> -
eV @-10) \J o »Jz,

Soit £ un élément de V(Q) — {0}, de coordonnées (&, .., £,); alors I'intégral

J Lo JEt)dp(t) est non nulle lorsque
z

p

Ma'x(lE.bllp) swey 'E.bnlp) S 1
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Pour que le produit sur I'ensemble des nombres premiers des intégrales
précédentes soit non nul, il faut donc choisir £ de coordonnées (&),
verifiant :

&€ ()(QNZ,);

donc ; doit étre un élément de Z. Par conséquent

+ o

E(@, (X, 1,.., 1,..), @) = | det x |°- Y f ™ (Etx,)dt .
eV -0} J o

D’autre part on a

+ o +
f tns—l . (Poo@txoo)dt — J tns—l . e—nt2F(§xoo)dt )

0 0

Faisons le changement de variables
u = nt’ F(€x,);

Iintegrale ci-dessus devient

1 r ns _% F ns
— S . . 2

et puisque
F(tio1+..+1,0,) = (t;, .., t,)A ‘A -],
tn
on a
(¥) E(@, (Xy, 1, .y 1, ..), ®)
1 ns\ _ns — ns
=§F ? T 2-|detxoo|s- Z (quOA-rArx_ootq)_T'
qeZ" — {0}

Dans le cas qui nous intéresse, les matrices x_ ont pour valeurs
Xo = P;!x, xeZR)T(Z)\TR).
On rappelle que I'on a un isomorphisme
T (EQR)* — T(R)
y = m(y).

_ De plus, on vérifie facilement que I'on a le
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LEMME. Soit y un élément de (EQR)™;
n(y) = AD(y)A™',

ou D(y) est la matrice diagonale (y'V, ..., y™).

Soit v I'isomorphisme défini au chapitre II, en prenant pour v la place
infinie, on voit que v applique T(R) sur (R™)* x (C*) et que

vem(y) = ('Y, .,y ).
Pour y = (yV, .., y"1*2)) un élément de (R*)" x (C*)? on note
s dy —rteody,
= il]l[yil o 7_ =1 |yl
avec
e; =1 pour 1<i<r
et

e, =2 pour r,+1<i<<r +r,.

Définition 2. Soit P une matrice d’ordre n réelle, symétrique, définie
positive; on définit la série d’Epstein Z(P, s) ou s est un nombre complexe

) n
vérifiant Re s > 5:

1
Z(P,s) =5 » (qP'9*.

qeZ" —{0}

Avec cette définition et en utilisant la relation (), intégrale I se réécrit
présent

2/)y

.....

h — d
J=Y J (Ny)S-Z(P;lAD(y) D(y) ‘A ‘P,flﬁ)—y
J=1 J y=01,s¥p, 44,)62

et @ est un domaine fondamental dans (R*)" x (C*)? correspondant p: -

I'isomorphisme v a un domaine fondamental de Z(R)T(Z)\ T(R).
Posons comme nouvelles variables

‘ 2. i I 2

Tl = lyl ";Tr1+r2 = |'yr1+r2
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et pour toute matrice P de G(R), écrivons

O — (det P)""- P,

il vient

J = 2r1—1(4n)r1 . 2—(r1 +ra2) , | dE | -s/2, K ;
avec

h o ryt+r2 d:c

K=Y Jz ((Pj?)—lAOD(r) FA° ‘(Pf.’)‘1 — ) 11 —,
ji=1 i=1 T

ou lintégrale porte sur les T = (ty, .., T, +,,) € U/H €t ou dp = det(A)?
désigne le discriminant de E, D(t) la matrice diagonale

(Tys oo Trgt 15 oo Trpbrgs Trpt 1o oo Teybra) s

H le sous-espace de (R })* 7" défini par I’équation

rit+ra

[ = =

i=1
et U 'image dans H des unités du corps de nombres E.

On fait encore le changement de variables suivant:
R 5 R, xR’
(Tis oo Trytry) 2 (U Xq 5 oy X,)

our=ry +r, — let
r .
=u-[]1eP|* pour 1<j<r, +r,,
i=1

ou (gy, ..., &) est un systéme d’unités fondamentales de E.
Le Jacobien de ce changement de variables est

rit+r2
( I ri>u‘1-2”_1-nR,

i=1

ou R désigne le régulateur de E défini par

1
1 A g

+1
i 8(1’ )
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D’autre part, les unités de E ont pour image le réseau Z" dans R’ et?
les racines de I'unité contenues dans E ont pour image le vecteur nul. Si

X . w
on note w le nombre de ces racines alors le cardinal de U est 5

Finalement ’expression K devient

K = 2” . w_lnR Eh Z<PO —S dX
Jyx o 2 )
x€[0,1]

J=1

ou on a noté¢ P;, la matrice

P;, = P;'AD()'A(P; ).

X

Réécrivons a présent I'égalité du théoréme 1 avec les expressions qui
viennent d’étre calculées.

ProrosiTiON 12 (Formule de Hecke). Soit

AdS) = (27 wPldgl2) T (—;—) T Gl)

et pour une matrice P réelle, symétrique, définie positive, posons
AP, s) = n °I'(s) Z(P, s) .
Alors

we Ags) = 2'1—1-an A(Pj.{x,”—s>dx.
i=1J xe[0,11 2

Remarque. 1l serait intéressant de faire le calcul précédent dans un ca:
plus général ou l'on consideére un quasi-caractére ® de A" quelconque
Ainsi @ o Ngq correspond a un caractére de Hecke sur le groupe des idéau.
de E (cf. [4], chap. 8, §3, p. 156) et la difficulté est alors de calculer I'int¢
grale toroidale aux places finies sur lesquelles le quasi-caractére w o N,
se ramifie.
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