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LA THEORIE DE THEODORE
DES CORPS QUADRATIQUES REELS

par Jean-Pierre KAHANE

Théodore a développé des preuves géométriques pour Pirrationalité de
ﬁ, ﬁ, .. jusqua /17 1). A titre d’exemple, voici de telles preuves géome-

triques pour \/5 et ﬂ

B’ A
E
C B
D
FIGURE 1

Sur la figure 1, ABCB' est un carré, et CD = CE = CB = AB. Ainsi
AD = 2AB + AE. Les triangles ABE et ADB sont semblables, donc

AD  AB . L : .
1B - AE Donc l'algorithme des divisions successives, appliqué a AD et

AB, ne se termine pas. Donc 1 + \/5 est irrationnel.

Sur la figure 2, ABB’ est un triangle équilatéral, G est le milieu de BB,
et

) Platon, Théététe, 147 d.




86 J.-P. KAHANE

A
D
E
F
B’ B
G
C
FIGURE 2

GE = GC = GB
CB // GF ) BED .

Par symétrie par rapport a GF, EF = BF.

Par projection parallele de B'GB, DF = FB.
i . .
ﬁ} = 2EBF parce que le triangle EF B est isocele, donc

ﬁﬁzg:ﬂ},

donc le triangle AEF est isocéle, donc EF = AE. Donc l

AC = EC + AE = AB + AE
AB = 2AE + AD

AE AC , .
—— = —— par homothetie .
AD AB

Donc lalgorithme des divisions successives, appliqué a AC et AB, ne se

1+ /3
2

termine pas. Donc est irrationnel.

. . . AD
La premiere preuve sexprime ainsi, en posant x = 1 + ﬁ = ZE:
1 1
x=24+-=24+4———=(22,.) .
X 1 7
2 + g

2+ ..

g
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ou la parenthése contient la suite des quotients incomplets de la décompo-

1+ /3
2

sition de x en fraction continue. La seconde preuve, avec x =

AC . :
= ——, necessite deux étapes:
AB
1 1
x:1+—, X1=2+—-,
X X
1
s0it x =1+ { =(1,2,1,2,..).
2
' 1 + :
A

Soit maintenant n un entier quadratfrei. Une preuve a la Théodore que

\/71 est irrationnel nécessite 1) le choix d’'un nombre x € Q(ﬁ), corps de ﬁ,
2) le développement de x en fraction continue, 3) une preuve géomeétrique

que ce développement est périodique. Désignons par Qp(\/;) I’ensemble des

X € Q(ﬁ), x > 1, dont le développement est purement périodique (sans partie
apériodique), c’est-a-dire dont le conjugué est compris entre —1 et 0. On

se limite a x € Qp(ﬁ). Ainsi

X =X, = a; + — (a, = E(x,))
1
|
X, = a, + — (ay=E(x,))
X3
(1)
1
Xp—1 = QG + — (ak“E(Xk—l))
Xk
X, = X5 = X X;#x s1 j<k

La preuve géométrique consiste a construire une figure ou apparaissent des

segments Sg, Sy, ... S tels que S, = xS,

So = a;S; + 5,
S, = a,S, + S;

Si—1 = aS; + Sk+1
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Sk So

et a montrer que .
Skv1 Sy

Cette derniére égalité résulte de la similitude de deux triangles, dont le
rapport de similitude est

So
p=px = 5,
Nous appellerons p(x) la raison de x. La complexité de la preuve dépend
de k (le nombre d’é¢tapes, que nous appellerons la hauteur de x), et sa
faisabilite dépend de p; il est clair que pour p > 50 la figure souhaitée

ne peut pas étre tracée.
Dans son aspect algébrique, la théorie de Théodore consiste en ceci.

1) Etant donné n, déterminer le minimum de p(x) quand x € Qp(ﬁ), qu’on
appellera la raison du corps Q(ﬁ) et qu’on désignera par r(n). 2) Parmi les
xeQ p(ﬁ) tels que p(x) = r(n), déterminer x de hauteur minimum.

Etant donné x € Qp(ﬁ), on a

p(x)_So S; S v %
— T T eee - O l e k__l .
Si1 S, S
Désormais, la suite des quotients complets xo = X, Xy, ., Xp—1, X = Xg5

les quotients incomplets ay, .., g, et la hauteur k sont définis par les for-
mules (1), et la raison de x par la formule

(2) p(X) = Xoxl .o xk_l — XIX2 e Xk .

Les formules (1) peuvent s’écrire
Xox1\ _ far 1Y [x
x, ) \1 0/\1
XoX1X2\  fay 1\ fa; 1\ [x,
X1X5 ~\1 0 1 O 1

Posons
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x\ (P P (x)
p(l) ] <Q Q’> 1
avec p = p(x). Donc

(3) p=0x+¢

et p est la valeur propre supérieure 4 1 de la matrice unimodulaire

On obtient

P P , : . .
<Q ,>. Soit N la trace, et ¢ = + 1 le déterminant de cette matrice. On a

(4) p2? — Np+e=0 (N=P+Q', e=PQ —P'Q)
N+ /N*— 4
A 2
x_N~2Q’+,/N2—48
- 20 .
Sie = — 1 la formule (4) s’écrit

1
p = N+B=(N,N,...).

Ainsi per(ﬁ), et p a pour hauteur 1 et pour raison p. Parmi les

nombres y € Qp(\/;) tels que p(y) = p, le meilleur choix possible (le nombre
de hauteur minimum) est y = p.

St e = + 1 la formule (4) donne

—1 1
P N

p=N-1+
p 1

donc
p—1=(N-2,1;N—2,1,.).
Ainsi p—1le Qp(ﬁ), et p—1 a pour hauteur 2 et pour raison

_ p -
p = (p—l)ﬁ. Parmi les nombres ye Qp(ﬁ) tels que p(y) = p, les

meilleurs choix possibles (hauteur minimum) comprennent y = p — 1. De
fagon générale, ces meilleurs choix sont de la forme

y =(ab;ab;..)
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(oG )-(5 8

ou P + Q' = N, cest-a-dire

avec

ab +2 = N

et alors, d’apres (3),

Donc le nombre des meilleurs choix est le nombre de diviseurs de N — 2,
et le plus grand des meilleurs choix est p — 1.
Dans les deux cas on a

N? — 4e = k*n.

Le plus petit choix de p correspond au plus petit choix de N, cest-a-dire
a la solution minimale de I’équation en (N, k)

(F) N? — k’n = 4¢.

Quand N est pair, I’équation (F) s’appelle équation de Fermat, ou de
Fermat-Pell.

Résumons. Si Qp(ﬁ) contient un nombre de hauteur impaire, il contient
aussi un nombre p de hauteur un (a savoir la raison du précédent).

L’équation (F) avec ¢ = — 1 admet une solution
1
N=p——.
Y

La plus petite solution de (F) donne le minimum de p, c’est-a-dire la

raison r(n) du corps Qp(ﬁ). Il existe un x unique de hauteur minimum
tel que p(x) = r(n), a savoir x = r(n).

Si Qp(ﬁ) contient seulement des nombres de hauteur paire, il contient
des nombres p de hauteur deux (a savoir les raisons des précédents)
L’équation (F) avec € = 1 admet des solutions

N=p+ —.
p
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La plus petite solution de (F) donne le minimum de p, c’est-a-dire r(n). |

Les nombres x e Qp(\/;) de hauteur minimum tels que p(x) = r(n) sont les
quotients de p — 1 par les diviseurs de N — 2.

Dans les deux cas, les raisons p(x) (erp(ﬁ) sont les unités du corps

Q(\/; ). La théorie de Théodore est une fagon simple d’obtenir leur existence

et certaines de leurs propriétés, et aussi de démontrer l’existence de solutions

¥
]
|
I
i

de (F) quand ¢ = 1 (observer que si e=—1 la hauteur de r%(n) est 2).

Le tableau 1 donne les valeurs de ¢ et de r(n) pour les entiers quadratfrei n, -

compris entre 2 et 19. Il explique pourquoi Théodore s’était arrété¢ a \/17.

La figure 3 explicite une construction géométrique dans le cas n = 7, et
montre comment on peut opérer en une ¢étape, dans le cas € = 1, en
utilisant une variante de l'algorithme des divisions successives. Méme avec
cette simplification, la figure dans le cas n = 14 est peu lisible, et dans le cas
n = 19 elle est impossible a tracer.

B D A E

FIGURE 3

AB = 8BC, @:%, AD = AE = AC = 3./7 BC
BC BE
= 7V)BC = 16 BC — BD, — = —
BE = (8+3./7) 50 = Be
Jean-Pierre Kahane (Regu le 22 décembre 1983 )
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