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VEnseignement Mathématique,t.31 (1985), 85-92

LA THÉORIE DE THÉODORE

DES CORPS QUADRATIQUES RÉELS

par Jean-Pierre Kahane

Théodore a développé des preuves géométriques pour l'irrationalité de

y/}, y/5, jusqu'à yï7 '). A titre d'exemple, voici de telles preuves géométriques

pour yfï et y/3.

B' A

Figure 1

Sur la figure 1, ABCB' est un carré, et CD CE CB AB. Ainsi
AD 2AB + AE. Les triangles ABE et ADB sont semblables, donc

— Donc l'algorithme des divisions successives, appliqué à AD et
AB AE

AB, ne se termine pas. Donc 1 + Jl est irrationnel.

Sur la figure 2, ABB' est un triangle équilatéral, G est le milieu de BB\
et

Platon, Théétète, 147 d.
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A

Figure 2

GE GC GB

CB // GF // B'ED

Par symétrie par rapport à GF, EF BF.

Par projection parallèle de B'GB, DF FB.

^EFA^ ^IFBF parce que le triangle EFB est isocèle, donc

-EFÀ - 'EAF,
6

donc le triangle AEF est isocèle, donc EF AE. Donc

AC EC + AE AB + AE

AB 2,4F + AD

AE AC
par homothétie

AD AB F

Donc l'algorithme des divisions successives, appliqué à AC et AB, ne se

1 + •

termine pas. Donc est irrationnel.

K AD
La premiere preuve s exprime ainsi, en posant x 1 + :

AB

x — 2 -\— 2 -\ — (2, 2,...)
* 1

2 +
2̂ +
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où la parenthèse contient la suite des quotients incomplets de la décompo-
1 + x/3

sition de x en fraction continue. La seconde preuve, avec x

AC
— nécessite deux étapes :

AB

1 1

x 1 H x1 2 -i—,
x1 x

soit x 1 H (1, 2, 1, 2,...)

2 + —
1 +

2 +...

Soit maintenant n un entier quadratfrei. Une preuve à la Théodore que

y/n est irrationnel nécessite 1) le choix d'un nombre x g Q(y/n), corps de ^/û,
2) le développement de x en fraction continue, 3) une preuve géométrique

que ce développement est périodique. Désignons par Qp(y/n) l'ensemble des

e 0(N m. x > 1, dont le développement est purement périodique (sans partie
apériodique), c'est-à-dire dont le conjugué est compris entre — 1 et 0. On

se limite à x g Qp(y/n). Ainsi

1

x x0 ax + — (aA E(x0))

1

Xi a2 + — (a2 E{xl))
v2

(1)

xk-1 ak A-

xk

xk xo x Xj ^ x si j < k

x (a1, a2,... ak \ al, a2,... ak ;...).

La preuve géométrique consiste à construire une figure où apparaissent des
segments S0,Sl9... Sk tels que S0 xS1,

S0 ci^S^ + S 2

Si — a2^2 + S3
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et à montrer que
So

Si'

Cette dernière égalité résulte de la similitude de deux triangles, dont le

rapport de similitude est

/ x
S0

P p(*) 77" •

Nous appellerons p(x) la raison de x. La complexité de la preuve dépend
de k (le nombre d'étapes, que nous appellerons la hauteur de x), et sa

faisabilité dépend de p; il est clair que pour p > 50 la figure souhaitée

ne peut pas être tracée.

Dans son aspect algébrique, la théorie de Théodore consiste en ceci.

1) Etant donné n, déterminer le minimum de p(x) quand x g Qp(^/n\ qu'on

appellera la raison du corps Q(^/n) et qu'on désignera par r(n). 2) Parmi les

x g Qp{sfn) tels que p(x) r(n), déterminer x de hauteur minimum.

Etant donné x g Qp{^/n\ on a

S0 Si sk^1
P(*) TT 77 ••• -7- *0*1 - *fc- 1 •

Désormais, la suite des quotients complets x0 x, x1,..., xk_ls xh x0,
les quotients incomplets a1,..., ak et la hauteur k sont définis par les

formules (1), et la raison de x par la formule

(2) p(x) - x0x! Xfc-i xxx2 xk.

Les formules (1) peuvent s'écrire

*0*1

*i
*0*1*2
XiX2

1

1

0 \ 1

a1 1

1 0

Posons

XnXi Xi

P P'

Q Q
aY 1

1 0

a2 1

1 0

a 2
1

1 0

ak 1

1 0

ak 1

1 0
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On obtient

avec p p(x). Donc

(3)

P F
Q

p Qx + Q'

et p

P F
Q Q

(4)

est la valeur propre supérieure à 1 de la matrice unimodulaire

Soit N la trace, et 8 ± 1 le déterminant de cette matrice. On a

p2 — Np + 8 0 (N P + Q', 8 PQ'-FQ)

N + yN2 - 48

N - 2Q + JN2 - 48
X " 2Q

Si s — 1 la formule (4) s'écrit

N + — {N, N,
P

Ainsi p e Qp{y/n), et p a pour hauteur 1 et pour raison p. Parmi les

nombres y e Qp(y/n) tels que p(+) p, le meilleur choix possible (le nombre
de hauteur minimum) est y p.

Si 8 + 1 la formule (4) donne

p N - 1 + N - 1 -y

1 +
P - 1

donc

p - 1 (N — 2, 1; N — 2, 1,...).

Ainsi p — 1 e Qp(^fn\ et p — 1 a pour hauteur 2 et pour raison

p (p-1) - Parmi les nombres ysQJ^/n) tels que p(j;) p, les

meilleurs choix possibles (hauteur minimum) comprennent y p — 1. De
façon générale, ces meilleurs choix sont de la forme

y (a, b\a, b\...)
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avec

a l\ (b 1\
_

(P P'
1 0) ^1 0/ " \Q Q

où P + Q N, c'est-à-dire

et alors, d'après (3),

ab + 2 N

y

Donc le nombre des meilleurs choix est le nombre de diviseurs de N — 2,

et le plus grand des meilleurs choix est p — 1.

Dans les deux cas on a

N2 — 4s k2n

Le plus petit choix de p correspond au plus petit choix de N, c'est-à-dire
à la solution minimale de l'équation en (N, k)

(F) N2 — k2n 4s

Quand N est pair, l'équation (F) s'appelle équation de Fermât, ou de

Fermat-Pell.

Résumons. Si Qp{^/n) contient un nombre de hauteur impaire, il contient
aussi un nombre p de hauteur un (à savoir la raison du précédent)

L'équation (F) avec s — 1 admet une solution

1

N p — „
P

La plus petite solution de (F) donne le minimum de p, c'est-à-dire la

raison r(n) du corps Qp(^/n). Il existe un x unique de hauteur minimum
tel que p(x) r(n), à savoir x r(n).

Si Qp(y/n) contient seulement des nombres de hauteur paire, il contieni
des nombres p de hauteur deux (à savoir les raisons des précédents)

L'équation (F) avec 8=1 admet des solutions

1

N p +
P
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La plus petite solution de (F) donne le minimum de p, c'est-à-dire r(ri).

Les nombres x g Qp(y/n) de hauteur minimum tels que p(x) r(n) sont les

quotients de p — 1 par les diviseurs de N — 2.

Dans les deux cas, les raisons p(x) (xeQp(«Jn) sont les unités du corps

Q{y/n). La théorie de Théodore est une façon simple d'obtenir leur existence

et certaines de leurs propriétés, et aussi de démontrer l'existence de solutions
de (F) quand 8=1 (observer que si 8 — 1 la hauteur de r2(n) est 2).

Le tableau 1 donne les valeurs de 8 et de r(n) pour les entiers quadratfrei n,

compris entre 2 et 19. Il explique pourquoi Théodore s'était arrêté à y/ïï.
La figure 3 explicite une construction géométrique dans le cas n 7, et

montre comment on peut opérer en une étape, dans le cas 8=1, en

utilisant une variante de l'algorithme des divisions successives. Même avec

cette simplification, la figure dans le cas n 14 est peu lisible, et dans le cas

w—19 elle est impossible à tracer.

Figure 3

AB 8ßC ÂCB~=^, A

r BC BE
BE (8 + 377) BC16 BC - BD— —

Jean-Pierre Kahane (Reçu le 22 décembre 1983)
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