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PLANE CURVES IN FANCY BALLS

by Lee RupoLPH ')

One expects minimal surfaces (in the sense of differential geometry),
and in particular complex analytic curves, to be subject to topological
restrictions in the manner in which they may be embedded in a region
of R* (or C2). But caution is in order here: the ambient region, even if
it is difftomorphic to a ball, had better be subject to some geometrical
hypotheses itself if it is to enforce good behavior on its minimal surfaces
and complex curves. In fact we have the following result. Let D* be the
standard, round, unit ball {(z,w)e C*:|z|* + |w]|? < 1}.

THEOREM. Let S be a 2-manifold-with-boundary smoothly embedded in-
D* subject only to the conditions that

1. S is orientable,
2. S has no closed components (i.e., is connected rel 05 ),
3. 8S is the transverse intersection of S and 0D*.

Then there is a smooth embedding i: D* — C* such that iS) is a piece
of complex curve, and a fortiori a minimal surface in (flat) R* = C2

Here, by “piece of complex curve” I mean a smooth oriented 2-manifold-
with-boundary in C? such that each of its tangent (real) 2-planes is in fact
a complex line. (Then actually the interior of the 2-manifold-with-boundary
is locally defined by the vanishing of complex-analytic functions.)

It is worth contrasting this with a quotation from a recent paper by
Joel Hass [0]:

“COROLLARY 1.14. The intersection of a 3-sphere in C? with a
[-dimensional complex variety, which is non-singular and has genus zero inside

the 3-sphere, is a ribbon knot. The intersection of such a variety with the
corresponding 4-ball is a ribbon disk.

!) Research partially supported by the Fonds National Suisse at the Mathematics
. W:!ri'xstltute of the University of Geneva.
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“The results .. extend to surfaces of higher genus than the disc ..}
with ... ‘ribbon surface of genus g’ replacing ‘ribbon disc’.”
See Remark 1, below, for a discussion of ribbons. Hass, of course, is

speaking of round 3-spheres.

Proof. For arbitrarily large integers g, one can find a non-singular%
affine algebraic curve V, = {(z, w) e C*: f(z, w) = 0}, f(z, w) € C[z, w], which
is diffeomorphic to a closed, connected smooth surface of genus g with a
single point (at infinity) removed. (For instance, if p(w) € C[w] is sufficiently
general, of odd degree 2k + 1 > 3, the hyperelliptic curve V, with f(z, w) |
= z® + p(w) is such a curve, of genus g = k(2k—1).) So on some such Vf
there is a subsurface S’ diffeomorphic to S (using 1., 2., and the obvious
compactness of S). The diffeomorphic surfaces S and S’ are both given as
subsets of C2 = R* One easily sees that they are in fact ambient isotopic.
(From 2., S has a handle decomposition with only 0- and 1-handles; the
isotopy can be constructed handle by handle.) Let i be the restriction to D*

of the final stage of the ambient isotopy. ul

COROLLARY. Let K <= S® = 0D* be an oriented smooth knot or link. |
Then there is an embedding i: D* — C* such that i(K) bounds a piece of |
complex curve in i(D%).

Remarks. (1) It 1s certainly not true that, even allowing preliminary
isotopy of the surface in D*, every smooth surface S = D* satisfying 1., 2..
and 3. can be represented as a piece of complex curve in D* itself. A
surface S — D* (satisfying 3.) is said to be ribbon embedded if L|S is o
Morse function without local maxima, where L(z,w) = |z |? + |w]|?; &
surface is ribbon if it is isotopic to a ribbon embedded surface. Relative
Morse theory shows that it is a genuine topological restriction on § < D*
to be ribbon (for instance, the map mn,(0D*—08S) — n(D*—S), induced by
inclusion, is surjective if S 1s ribbon, but need not be in general even when ¢
satisfies 1., 2, and 3. — cf. [0], p. 102). But, as is well-known, Milnor’
proof [2], that a Stein manifold of complex dimension k embedded ir
affine space has the homotopy type of a CW-complex of dimension no more¢
than k, in fact proves more—namely, a statement about the nature of the
embedding of the Stein manifold which, particularized to a piece of complex |
curve embedded in D* (satisfying 3.), says the curve is ribbon. (Hass draws
the same conclusion from minimality of complex curves [0].) i'

More generally (but with the same proof) any piece of complex curve ;
in any Stein domain D homeomorphic to D*—e.g., a bidisk D? x D*—is
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a ribbon (relative to a plurisubharmonic exhaustion of D—L being one such
for D).

(2) Presumably it is also not true that every isotopy type of oriented
smooth knot or link in D* is represented by the (complete) boundary of a
piece of complex curve in D* with its standard, round, geometry;
of. [3, 4, 5, 6, 7]. But at this writing the question remains open, to the
author’s knowledge.

(3) Let D?> = D* be a disk (ribbon or otherwise), S a surface of genus 1,
satisfying 3., with dS = 0D? In the proof of the theorem for this case,
one may take f(z,w) = w? + z(z—1)(z—2), say, so that the completion
(ie, closure) of V, in CP? > C? is a closed surface of genus 1, which
represents three times the canonical generator in H,(CP?; Z).

Suppose i(D*)—V, were precisely S’ = i(S). Then one could perform a
surgery on the closure of ¥, in CP? replacing S’ by {(D?). The resulting
2-sphere, smooth(ab)ly embedded in CP?, would still represent three times the
generator—a situation long known to be impossible [1]. Thus i(D*)—V,
properly contains §’. Indeed, it must have some component which links S’
(geometrically, not algebraically).

This example is also related to Stein theory. In fact, in a Stein domain,
a piece of analytic complex curve (with boundary in the boundary of the
domain) 1s the zero locus of some analytic function defined globally in the
domain. In this example, the globally defined function f |(Inti(D%) is
analytically irreducible, and its zero locus properly contains i(Int S).
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