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Pour prouver #'(i + 1, 0), il suffit donc d’¢tablir que
0:H;,;(X; M ®N) - - H (X;T)
est injectif pour i > 0. On a la suite exacte:
Hioy (XGLON) > Hiy (XM @ N) > Hi (X T),

d’ou l'injectivité de 0 est conséquence du lemme suivant:

(2.3) LEemME.  Soit X = K(m, 1), N un m-module a gauche et L un
n-module libre. Alors H;(X;L @ N) = 0 pour j > 0.

Démonstration. Grace a l’istorphisme
Hj(X;(Ll @L2)®N) = H;(X; L, @N)® H;j(X;L, ® N),
il suffit de démontrer (2.3) pour L = Zn. Rappelons que

PR,0 = HoX;P®Q)
(voir [Br, p. 55]). On a alors:

(Zn ® N) ®, C;(X) = Ho(X;(Zn ® N) ® C;(X)) =
= Hy(X;Zn ® (N ® C;(X)) = Zn ®,(N ® C;(X)) =
= N® C;(X).

On en déduit que H;(X;Zn ® N) = H;(X; N) = 0, la derniére égalité
étant due au fait que X est contractile.

Démonstration du lemme 3. 1l suffit de démontrer que #” (i, k) implique
H@i + 1,k) pour i >k Soient M un m-module a droite et N un
n-module 4 gauche. Choisissons une suite exacte 0 - K - L - M — 0 avec
L un Zn-module libre. Comme K est sans Z-torsion, ’hypothese #" (i, k)
et le méme raisonnement que pour la démonstration du lemme 2 montrent
que ¢ DE(M, N)(z, o) = z N o

3. REMARQUES, APPLICATIONS
1) La preuve du théoréme (2.1) utilise abondamment le fait que 'on a

affaire 2 I'homologie et a la cohomologie a coefficients locaux. Notre
méthode ne donne donc pas de caractérisation du cap-produit pour ’homo-
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logie et la cohomologie a coeflicients constants. De méme, et curieusement,
elle ne semble pas permettre de montrer que des propriétés analogue§
a I-IV puissent caractériser le cup-produit. Observons qu’'une telle caracté:
risation du cup-produit existe pour la cohomologie des groupes finis (voir,

[Ws, §4.2]).

2) Nous ignorons si les propriétés I a IV impliquent que

Y(M, N)(z,a) = z n o sans les hypothéses restrictives sur M ou N(n > 0).1‘
Observons que le cap-produit

H*(X; M) x H,(X;N)—> Ho(X; M ® N)
est induite par 'application « évaluation »:
(M ®, C,(%) x Hom,(C,(%); N) > M ®,N
(m@gz,0) = mQ uz).

3) Supposons que la famille d’applications ¢% (M, N) soit induite par
une famille d’applications:

¥ (M, N): (M ®,C;(X) x Hom,(C(X); N) > (M ® N) ®, C;—,(X)
telle que
00" (z, o) = (= 1) ¥(dz, ) + @"*"1(z, 80) (9™ = ¢k (M, N)).
Alors, les conditions II et III du théoréeme (2.1) sont automatiquemert
vérifiées.

4) Une caractérisation axiomatique du cap-produit telle que celle pré-
sentée dans cet article peut étre utile pour reconnaitre cette opération
exprimée dans d’autres theories homologiques (homologie simplicial,
cubique, etc.). Si W, : H,(X; M) S H, (X; M) et ¥*: H*(X; N) 5 H*X; M)
sont des isomorphismes de théories (co-)homologiques et si

A H(X; M) x HY(X;N) > H,_,(X; M ® N)

est un cap-produit satisfaisant aux propriétés I a IV, alors W, (z A o) =:
W, (z) n W*(o) (avec les restrictions sur M du théoréme (2.1)).
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