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Pour prouver Xfl(i 4- 1,0), il suffit donc d'établir que

d: Hi+1(X-,M<8>JV) —* - H,(X;T)

est injectif pour i^0.On a la suite exacte :

Hi+1 {X;L<g>N)->Hi + 1 {X ;M <g> A H, (X ; T),

d'où l'injectivité de ô est conséquence du lemme suivant :

(2.3) Lemme. Soit X K(n, 1), N un n-module à gauche et L un

n-module libre. Alors Hj(X; L ® N) 0 pour 7 > 0.

Démonstration. Grâce à l'isomorphisme

; (Li © L2) ® iV) H,(2f ; L, ® N) © Hj{X ; L2 ® N),

il suffit de démontrer (2.3) pour L Ztl Rappelons que

P(8>nß H0(X;P® ß)

(voir [Br, p. 55]). On a alors:

(Zji <g> N) 0, Cj(X)Ho(X-, (Zng)N) ® C,-(X))

H0{X;Ziz ® {N <%>Zrr <g>„(N «g)

TV <g> Cj(X).

On en déduit que Hj{X; Zn (g N) /T,(X ; TV) 0, la dernière égalité
étant due au fait que X est contractile.

Démonstration du lemme 3. Il suffit de démontrer que J»fr(ï, k) implique
Jf{i + 1 ,k) pour i ^ k. Soient M un Ti-module à droite et N un
ïï-module à gauche. Choisissons une suite exacte 0->K->L->M->0 avec

L un Z7i-module libre. Comme K est sans Z-torsion, l'hypothèse Xf1 (i, /c)

et le même raisonnement que pour la démonstration du lemme 2 montrent
que (j)(I + 1)fc (M, N) (z, a) z n oc.

3. Remarques, applications

1) La preuve du théorème (2.1) utilise abondamment le fait que l'on a
affaire à l'homologie et à la cohomologie à coefficients locaux. Notre
méthode ne donne donc pas de caractérisation du cap-produit pour l'homo-
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logie et la cohomologie à coefficients constants. De même, et curieusement
elle ne semble pas permettre de montrer que des propriétés analogues
à I-IV puissent caractériser le cup-produit. Observons qu'une telle caracté-;;

risation du cup-produit existe pour la cohomologie des groupes finis (voiij!

[Ws, § 4.2]). j

2) Nous ignorons si les propriétés I à IV impliquent que

<\)"x (M, N) (z, a) z n a sans les hypothèses restrictives sur M ou N(n > 0).

Observons que le cap-produit

Hn (X ; M) x Hn (X ; N) H0{X;M (g) N)

est induite par l'application « évaluation » :

(M Cn(X)) x Hornn{Cn(X); N) - M ®nN

(m (g)nz, cl) -> m (g)noc(z).

3) Supposons que la famille d'applications <\>l£ (M, N) soit induite par

une famille d'applications :

cp*(M, N): (M 0nCi(X)) x Hornn(Ck(X); N) -> (M ® N) (g), C^k(X)

telle que

d(pik{z, oc) (-l)V~1,fc(^,a) -h cpf'fc + 1(z,ôa)((pifc - <p£(M, V)).

Alors, les conditions II et III du théorème (2.1) sont automatiquement
vérifiées.

4) Une caractérisation axiomatique du cap-produit telle que celle

présentée dans cet article peut être utile pour reconnaître cette opération

exprimée dans d'autres théories homologiques (homologie simplicialc,

cubique, etc.). Si M) ^ H^X; M) et : H*(X ; N) A H*(X; il)
sont des isomorphismes de théories (co-)homologiques et si

n : Ht (X ; M) x Hk(X;N) H,_fc(V;M <g) N)

est un cap-produit satisfaisant aux propriétés I à IV, alors (z n a) ='

^(z) n *F*(a) (avec les restrictions sur M du théorème (2.1)).
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