Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 31 (1985)

DOI:

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPRIÉTÉS CARACTÉRISTIQUES DU CAP-PRODUIT À

https://doi.org/10.5169/seals-54557

COEFFICIENTS LOCAUX

Autor: Hausmann, Jean-Claude / Zahnd, Antoine

Kapitel: 2. Le théorème de caractérisation

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$H_{i}(X, M'') \times H^{k}(X; N)$$

$$0 \times id$$

$$H_{i-k-1}(X; M') \times H^{k}(X; N)$$

$$H_{i-k-1}(X; M') \times H^{k}(X; N)$$

$$\Phi_{X}^{(i-1)k}(M', N) \longrightarrow H_{i-k-1}(X; M' \otimes N)$$

$$0 \times id$$

$$H_{i-k-1}(X; M') \times H^{k}(X; N)$$

Pour énoncer la propriété IV on utilise les identifications classiques:

$$H_0\left(X\,;\,M\right)\,=\,M\,\,\bigg/\,\,\big\{m\text{-}\,m\alpha\mid m\in M,\,\alpha\in\mathbf{Z}\,\,\pi\big\}\,,$$

$$H^0\left(X\,;\,N\right)\,=\,\big\{n\in N\mid gn\,=\,n\quad\text{ pour tout }\quad g\in\pi\big\}\,\subset\,N\,\,.$$

On vérifie que l'application $M \times H^0(X; N) \subset M \times N \to M \otimes N$ donnée par $(m, n) \to m \otimes n$ produit, par passage aux quotients, une application $H_0(X; M) \times H^0(X; N) \to H_0(X; M \otimes N)$ que l'on notera $(m, n) \mapsto m \otimes n$.

Propriété IV: $\phi_X^{00}(M, N)(m, n) = m \otimes n$.

2. Le théorème de caractérisation

(2.1) THÉORÈME. Soit

$$\phi_X^{ik}(M,N): H_i(X;M) \times H^k(X;N) \to H_{i-k}(X;M \otimes N)$$

une famille d'applications définies pour tout $i, k \ge 0$ et tout triple (X, M, N), où X est un CW-complexe connexe par arc, M un $\pi_1(X)$ -module à droite et N un $\pi_1(X)$ -module à gauche. Supposons que la famille $\phi_X^{ik}(M,N)$ satisfait aux propriétés I à IV. Alors $\phi_X^{ik}(M,N)$ $(z,\alpha)=z\cap\alpha$, sauf peut-être lorsque i=k>0. Cette dernière restriction est inutile lorsque M est sans Z-torsion ou que N est un $F\pi_1(X)$ -module pour un corps F.

Le reste de ce paragraphe est dévolu à la démonstration du théorème (2.1). Un théorème de Kan-Thurston [KT] affirme que, pour tout CW-complexe connexe par arc X, on peut trouver une application $f^X : TX \to X$ telle que:

- a) $f_*^X : H_*(TX; P) \to H_*(X; P)$ est un isomorphisme pour tout $\pi_1(X)$ -module P
- b) $TX = K(\pi_1(TX), 1)$, i.e. TX est contractile.

Ce résultat permet de réduire la démonstration du théorème (2.1) au cas d'espace d'Eilenberg-McLane. Le cas général découlera du calcul suivant (avec les abréviations $\phi_X^{ik} = \phi_X^{ik}(M, N)$ et $f = f^X$):

$$\phi_X^{ik}(z,\alpha) = \phi_X^{ik}(f_*(y),\alpha) = f_*\phi_{TX}^{ik}(y,f^*(\alpha)) = f_*(y \cap f^*(\alpha)) = z \cap \alpha.$$

La propriété I ne sera plus utilisée, car nous allons démontrer la proposition suivante:

(2.2). PROPOSITION. Soit
$$X = K(\pi, 1)$$
. Soit
$$\phi^{ik}(M, N): H_i(X; M) \times H^k(X; N) \to H_{i-k}(X; M \otimes N)$$

une famille d'applications définies pour tout $i, k \ge 0$, tout π -module à droite M et tout π -module à gauche N. Si $\varphi^{ik}(M,N)$ satisfait aux propriétés II, III et IV, alors $\varphi^{ik}(M,N)(z,\alpha)=z\cap\alpha$, sauf peut-être pour i=k>0. Lorsque M est sans \mathbb{Z} -torsion ou que N est un $F\pi$ -module pour un corps F, on a également $\varphi^{ii}(M,N)(z,\alpha)=z\cap\alpha$.

Démonstration. Considérons les énoncés suivants:

- $\mathcal{H}(i, k)$: $\phi^{ik}(M, N)(z, \alpha) = z \cap \alpha$, pour toute paire (M, N) de π -modules comme dans l'énoncé de (2.2).
- $\mathcal{H}^{t}(i, k)$: $\phi^{ik}(M, N)(z, \alpha) = z \cap \alpha$ pour toute paire (M, N) de π -modules comme dans l'énoncé de (2.2), avec M sans **Z**-torsion ou N un $F\pi$ -module.

L'hypothèse $\mathcal{H}(0,0)$ est vraie: elle est équivalente à la propriété IV. On va démontrer tout d'abord les deux lemmes suivants:

Lemme 1. Pour tout $i \ge k \ge 0$ $\mathcal{H}^{t}(i, k)$ entraı̂ne $\mathcal{H}^{t}(i, k+1)$.

Lemme 2. $\mathcal{H}^{t}(i, 0)$ entraı̂ne $\mathcal{H}^{t}(i+1, 0)$.

Puisque $\mathcal{H}(0,0)$ est vraie, les lemmes 1 et 2 impliquent que $\mathcal{H}^{t}(i,k)$ est vraie pour tout $i,k \ge 0$. On démontrera enfin le

LEMME 3. $\mathcal{H}^{t}(i, k)$ pour tout i, k, entraîne $\mathcal{H}(i, k)$ lorsque i > k, ce qui achèvera la démonstration de (2.2).

Démonstration du lemme 1. Soit (M, N) une paire de π -module comme dans l'énoncé \mathcal{H}^t (i, k+1). Considérons une suite exacte de π -modules à gauche $0 \to N \to I \to Q \to 0$ avec I un π -module injectif. Comme M est sans \mathbb{Z} -torsion, la suite $0 \to M \otimes N \to M \otimes I \to M \otimes Q \to 0$ est aussi exacte et le diagramme de la propriété II se réduit à un diagramme commutatif carré:

Comme *I* est injectif et $X = K(\pi, 1)$, on a $H^{j}(X; I) = 0$ pour j > 0 et donc $\delta: H^{k}(X; Q) \to H^{k+1}(X; N)$ est surjectif pour $k \ge 0$. On a donc, en utilisant $\mathscr{H}^{t}_{(i,k)}$:

$$\phi^{i(k+1)}(M, N)(z, \alpha) = \phi^{i(k+1)}(M, N)(z, \delta(\beta)) =
= \partial(\phi^{ik}(M, Q)(z, \beta)) = \partial(z \cap \beta) = z \cap \alpha,$$

ce qui prouve $\mathcal{H}^t(i, k+1)$ lorsque M est sans \mathbb{Z} -torsion. Dans le cas où N est un $F\pi$ -module, on procède de même: on prend une suite $0 \to N \to I \to Q \to 0$, avec I un $F\pi$ -module injectif. Une telle suite étant \mathbb{Z} -scindée, la suite $0 \to M \otimes N \to M \otimes I \to M \otimes Q \to 0$ est encore exacte.

Démonstration du Lemme 2. Soit (M, N) une paire de module comme dans l'énoncé de (2.2). Considérons une suite exacte de π -modules à droite $0 \to K \to L \to M \to 0$ avec L un π -module libre. On en déduit une suite exacte $0 \to T \to L \otimes N \to M \otimes N \to 0$ et une surjection $v: K \otimes N \twoheadrightarrow T$. Observons que K est sans \mathbb{Z} -torsion; on peut donc appliquer l'hypothèse $\mathscr{H}^{\iota}_{(i, 0)}$ à la paire (K, N). Ceci, combiné avec la propriété III permet le calcul suivant:

$$\partial(\phi^{(i+1)0} (M, N)(z, \alpha)) = (-1)^{0} v_{*}(\phi^{i0}(K, N)(\partial z, \alpha)) = v_{*}(\partial z \cap \alpha) =$$

$$= \partial(z \cap \alpha).$$

Pour prouver $\mathcal{H}^t(i+1,0)$, il suffit donc d'établir que

$$\partial: H_{i+1}(X; M \otimes N) \rightarrow H_i(X; T)$$

est injectif pour $i \ge 0$. On a la suite exacte:

$$H_{i+1}(X; L \otimes N) \to H_{i+1}(X; M \otimes N) \xrightarrow{\delta} H_i(X; T),$$

d'où l'injectivité de ∂ est conséquence du lemme suivant :

(2.3) Lemme. Soit $X=K(\pi,1)$, N un π -module à gauche et L un π -module libre. Alors $H_j(X;L\otimes N)=0$ pour j>0.

Démonstration. Grâce à l'isomorphisme

$$H^{j}(X;(L_{1}\oplus L_{2})\otimes N)=H_{j}(X;L_{1}\otimes N)\oplus H_{j}(X;L_{2}\otimes N),$$

il suffit de démontrer (2.3) pour $L = \mathbf{Z}\pi$. Rappelons que

$$P \otimes_{\pi} Q = H_0(X; P \otimes Q)$$

(voir [Br, p. 55]). On a alors:

$$(\mathbf{Z}\pi \otimes N) \otimes_{\pi} C_{j}(\widetilde{X}) = H_{0}(X; (\mathbf{Z}\pi \otimes N) \otimes C_{j}(\widetilde{X})) =$$

$$= H_{0}(X; \mathbf{Z}\pi \otimes (N \otimes C_{j}(\widetilde{X}))) = \mathbf{Z}\pi \otimes_{\pi} (N \otimes C_{j}(\widetilde{X})) =$$

$$= N \otimes C_{j}(\widetilde{X}).$$

On en déduit que $H_j(X; \mathbf{Z}\pi \otimes N) = H_j(\tilde{X}; N) = 0$, la dernière égalité étant due au fait que \tilde{X} est contractile.

Démonstration du lemme 3. Il suffit de démontrer que $\mathcal{H}^t(i, k)$ implique $\mathcal{H}(i+1, k)$ pour $i \ge k$. Soient M un π -module à droite et N un π -module à gauche. Choisissons une suite exacte $0 \to K \to L \to M \to 0$ avec L un $\mathbb{Z}\pi$ -module libre. Comme K est sans \mathbb{Z} -torsion, l'hypothèse $\mathcal{H}^t(i, k)$ et le même raisonnement que pour la démonstration du lemme 2 montrent que $\Phi^{(i+1)k}(M, N)(z, \alpha) = z \cap \alpha$.

3. Remarques, applications

1) La preuve du théorème (2.1) utilise abondamment le fait que l'on a affaire à l'homologie et à la cohomologie à coefficients locaux. Notre méthode ne donne donc pas de caractérisation du cap-produit pour l'homo-