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H{X, M") x HYX; N) Ox(M".N) _ _ H, (X;M'®N)
\ a
_ AN
J0 x id H;, ,_ (X;T)

Y . /
Hi_(X; M) x H(X;N) _ Q%" "M N) _ g, (X; M®N)/ Vs

AN

Pour énoncer la propriété IV on utilise les identifications classiques:

H,(X; M) = M/{m-moclmeM,oceZn},

H°(X;N) = {neN|gn=n our tout gemn} CN.
p

On vérifie que lapplication M x H°(X;N)CM x N> M ® N
donnée par (m,n) > m @ n produit, par passage aux quotients, une appli-
cation Hy, (X ;M) x H°(X; N) » Hy(X; M ® N) que l'on notera (m, n) —

m @ n.

Propriété 1V: &% (M, N)(m,n) = m @ n.

2. LE THEOREME DE CARACTERISATION

(2.1) THEOREME. Soit
¥(M,N):H,(X; M) x H*(X;N) > H,_, (X; M ® N)

une famille dapplications définies pour tout i,k >0 et tout triple
(X, M,N), ou X est un CW-complexe connexe par arc, M un
7, (X)-module a droite et N un mn(X)-module a gauche. Supposons que la
famille % (M, N) satisfait aux propriétés 1 a IV. Alors ¥ (M, N)
(z,o) = z N o, sauf peut-étre lorsque i = k > 0. Cette derniére restriction
est inutile lorsque M est sans Z-torsion ou que N est un Fm, (X)-

; f

module pour un corps F. |
Le reste de ce paragraphe est dévolu a la démonstration du théo- ||
réme (2.1). Un théoréme de Kan-Thurston [KT] affirme que, pour tout |
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CW-complexe connexe par arc X, on peut trouver une application
X TX - X telle que:

a) fX:H,(TX; P) - H, (X, P) est un isomorphisme pour tout
7, (X)-module P
b) TX = K(n,(TX),1), ie  TX estcontractile.

Ce résultat permet de réduire la démonstration du theoreme (2.1) au
cas d’espace d’Eilenberg-McLane. Le cas général découlera du calcul suivant
(avec les abréviations ¢ = O (M, N) et f = f¥):

Yza) = OF(f (), &) =[x (0 f* (@) = fL (V0 f* (@) = z0a.

La propriété I ne sera plus utilisée, car nous allons démontrer la pro-
position suivante:

(2.2). PropoOSITION. Soit X = K(m, 1). Soit
O*M,N):H,(X;M) x H*(X;N)> H,_,(X; M ® N)

une famille dapplications définies pour tout i,k = 0, tout m-module a
droite M et tout m-module a gauche N. Si &% (M, N) satisfait aux
propriétés 11, III et IV, alors &% (M, N)(z,o) = z na, sauf peut-étre
pour i =k > 0. Lorsque M est sans Z-torsion ou que N est un
Fr-module pour un corps F, on a également " (M, N)(z, o) = z N o

Démonstration. Considérons les énonceés suivants:

H(i, k): &* (M, N)(z, ) = z N o, pour toute paire (M, N) de
n-modules comme dans I’énoncé de (2.2).

H(i, k): &% (M, N) (z, ) = z n o pour toute paire (M, N) de
n-modules comme dans I’énoncé de (2.2), avec M
sans Z-torsion ou N un Fr-module.

L’hypothese #° (0,0) est vraie: elle est équivalente 4 la propriété IV.
On va démontrer tout d’abord les deux lemmes suivants:

LEMME 1. Pour tout i >k >0 H'(i,k) entraine H#'(i, k+1).

LEMME 2. 7' (i,0) entraine #'(i+1,0).

Puisque # (0, 0) est vraie, les lemmes 1 et 2 impliquent que " (i, k)
“st vraie pour tout i, k = 0. On démontrera enfin le
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LemMME 3. ' (i, k) pour tout i, k, entraine # (i, k) lorsque i > k,
ce qui achevera la démonstration de (2.2).

Démonstration du lemme 1. Soit (M, N) une paire de m-module comme
dans I'énoncé #" (i, k+1). Considérons une suite exacte de m-modules a
gauche 0 > N - I - Q - 0 avec I un n-module injectif. Comme M est
sans Z-torsion, la suitt 0 > M I N - MR ->MK QO —> 0 est aussi
exacte et le diagramme de la proprieté II se réduit & un diagramme
commutatif carré:

H{X; M) x HYX; Q) OHM Q) H,_(X;M®OQ)

id x & %,

H(X:M) x B (x;N) _®P""MN) g (X M®N)

Comme I est injectif et X = K(m,1), on a H(X;I) = 0 pour j > 0
et donc &: HYX; Q) » H*"}(X; N) est surjectif pour k > 0. On a donc,
en utilisant J#7; ,,:

GV (M, N) (z,0) = &7V (M, N) (2,8 (B) =
= (¢ M, Q) (z,B) = dznP) = znua,

ce qui prouve H'(i,k + 1) lorsque M est sans Z-torsion. Dans le cas
ou N est un Fr-module, on procede de méme: on prend une suite
0> N->1-0 -0, avec I un Frn-module injectif. Une telle suite étant
Z-scindée, la suite 0 - M I N->-M Q]I > M QS Q — 0 est encore exacte.

Démonstration du Lemme 2. Soit (M, N) une paire de module comme
dans I’énoncé de (2.2). Considérons une suite exacte de m-modules a droite
0> K—->L—->M -0 avec L un n-module libre. On en déduit une suite
exacte 0 > T>LQ®N->MQ®N — 0 et une surjection v: K N » T.
Observons que K est sans Z-torsion; on peut donc appliquer ’hypothése
H oy a la paire (K, N). Ceci, combiné avec la propriété III permet le
calcul suivant:

AP0 (M, N)(z, ) = (— 1) Ov, (¢ (K, N) (0z, a)) = v (0z na) =
=0dzna).
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Pour prouver #'(i + 1, 0), il suffit donc d’¢tablir que
0:H;,;(X; M ®N) - - H (X;T)
est injectif pour i > 0. On a la suite exacte:
Hioy (XGLON) > Hiy (XM @ N) > Hi (X T),

d’ou l'injectivité de 0 est conséquence du lemme suivant:

(2.3) LEemME.  Soit X = K(m, 1), N un m-module a gauche et L un
n-module libre. Alors H;(X;L @ N) = 0 pour j > 0.

Démonstration. Grace a l’istorphisme
Hj(X;(Ll @L2)®N) = H;(X; L, @N)® H;j(X;L, ® N),
il suffit de démontrer (2.3) pour L = Zn. Rappelons que

PR,0 = HoX;P®Q)
(voir [Br, p. 55]). On a alors:

(Zn ® N) ®, C;(X) = Ho(X;(Zn ® N) ® C;(X)) =
= Hy(X;Zn ® (N ® C;(X)) = Zn ®,(N ® C;(X)) =
= N® C;(X).

On en déduit que H;(X;Zn ® N) = H;(X; N) = 0, la derniére égalité
étant due au fait que X est contractile.

Démonstration du lemme 3. 1l suffit de démontrer que #” (i, k) implique
H@i + 1,k) pour i >k Soient M un m-module a droite et N un
n-module 4 gauche. Choisissons une suite exacte 0 - K - L - M — 0 avec
L un Zn-module libre. Comme K est sans Z-torsion, ’hypothese #" (i, k)
et le méme raisonnement que pour la démonstration du lemme 2 montrent
que ¢ DE(M, N)(z, o) = z N o

3. REMARQUES, APPLICATIONS
1) La preuve du théoréme (2.1) utilise abondamment le fait que 'on a

affaire 2 I'homologie et a la cohomologie a coefficients locaux. Notre
méthode ne donne donc pas de caractérisation du cap-produit pour ’homo-
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