Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 31 (1985)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPRIÉTÉS CARACTÉRISTIQUES DU CAP-PRODUIT À

COEFFICIENTS LOCAUX

Autor: Hausmann, Jean-Claude / Zahnd, Antoine

Kapitel: 1. DÉFINITION ET PROPRIÉTÉS DU CAP-PRODUIT

DOI: https://doi.org/10.5169/seals-54557

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PROPRIÉTÉS CARACTÉRISTIQUES DU CAP-PRODUIT À COEFFICIENTS LOCAUX

par Jean-Claude Hausmann et Antoine Zahnd

Soit X un CW-complexe connexe par arc et soient M et N deux $\pi_1(X)$ -modules. Le but de cet article est de caractériser la famille d'applications « cap-produit »:

$$H_i(X; M) \times H^k(X; N) \to H_{i-k}(X; M \otimes N)$$

 $(z, \alpha) \mapsto z \cap \alpha$

par quatre de ses propriétés: naturalité en X, comportement par rapport aux suites exactes courtes de coefficients (en M et en N) ainsi que description explicite en dimension i=k=0. La caractérisation est complète, sauf peut-être dans le cas i=k>0 où notre technique nécessite l'hypothèse que M est sans \mathbb{Z} -torsion ou que N est un $F\pi_1(X)$ -module pour un corps F (Théorème (2.1)).

Un point essentiel de notre démonstration est l'utilisation du théorème de Kan-Thurston [KT] qui permet de se ramener au cas où X est un espace d'Eilenberg-MacLane $K(\pi, 1)$. Dans ce cas, la naturalité en X n'est même plus nécessaire (Proposition (2.2)).

Le § 3 contient quelques remarques et suggestions d'applications. Les auteurs remercient M. Kervaire pour d'utiles conversations.

1. Définition et propriétés du cap-produit

Soit X un CW-complexe. Soit $S_j(X)$ l'ensemble des j-simplexes singuliers de X, i.e. des applications continues $\sigma \colon \Delta^j \to X$, où

$$\Delta^{j} = \{(x_0, ..., x_j) \in \mathbf{R}^{j+1} \mid x_r \ge 0 \quad \text{et} \quad \Sigma x_r = 1\}.$$

Le groupe $C_j(X)$ des j-chaînes singulières de X est le groupe abélien libre de base $S_j(X)$. Pour $i, k \leq j$, on définit la i^e face avant $i\sigma: \Delta^i \to X$ et la k^e face arrière $\sigma^k: \Delta^k \to X$ de $\sigma \in S_j(X)$ de la façon hábituelle:

$${}^{i}\sigma(x_{0},...x_{i}) = \sigma(x_{0},...x_{i},0,...,0)$$

 $\sigma^{k}(x_{0},...,x_{k}) = \sigma(0,...,0,x_{0},...,x_{k})$

Supposons dorénavant que X est connexe par arc et soit \tilde{X} son revêtement universel. L'action de $\pi = \pi_1(X)$ sur \tilde{X} munit le groupe $C_j(\tilde{X})$ d'une structure de π -module (à gauche). Ce π -module est π -libre de base $\{\tilde{\sigma} \mid \sigma \in S_j(X)\} \subset S_j(\tilde{X})$, où $\tilde{\sigma} \in S_j(\tilde{X})$ est un relevé de $\sigma \in S_j(X)$. L'opérateur bord $\partial \colon C_j(\tilde{X}) \to C_{j-l}(\tilde{X})$ est l'application π -linéaire définie sur $\tilde{\sigma} \in S_j(\tilde{X})$ par

$$\partial \tilde{\sigma}(x_0, ..., x_{j-1}) = \sum_{r=0}^{j} (-1)^r \tilde{\sigma}(x_0, .., x_{r-1}, 0, x_r, ..., x_{j-1}).$$

Soit M un π -module à droite. Le groupe d'homologie $H_r(X; M)$ est défini comme le r^e groupe d'homologie du complexe

$$(M \otimes_{\pi} C_{\star}(\tilde{X}); id_{M} \otimes_{\pi} \partial)$$
.

Si N est un π -module à gauche, le groupe de cohomologie $H^r(\tilde{X}; N)$ est le r^e groupe d'homologie du complexe $(Hom_{\pi}(C_*(\tilde{X}); N); \delta)$, où $\delta(\alpha)(z) = (-1)^r \cdot \alpha(\partial(z))$ pour $z \in C_r(\tilde{X})$.

Le cap produit:

$$\cap : (M \otimes_{\pi} C_{i}(\tilde{X})) \times Hom_{\pi}(C_{k}(\tilde{X}); N) \to (M \otimes N) \otimes_{\pi} C_{i-k}(\tilde{X})$$

est l'application Z-bilinéaire qui, pour $m \in M$, $\tilde{\sigma} \in S_i(\tilde{X})$ et $\alpha \in Hom_{\pi}(C_k(\tilde{X}); N)$ a pour définition:

$$(m \otimes_{\pi} \tilde{\sigma}) \cap \alpha = (m \otimes \alpha({}^{k}\tilde{\sigma})) \otimes_{\pi} \tilde{\sigma}^{i-k}.$$

Le symbole \otimes dénote le produit sur \mathbb{Z} par opposition à \otimes_{π} qui désigne celui sur $\mathbb{Z}\pi$. Le groupe $M \otimes N$ est muni de la structure de π -module à droite donnée par $(m \otimes n)$ $g = mg \otimes g^{-1}$ n. Grâce à cette structure, or vérifie immédiatement que l'application « cap-produit » ci-dessus est bien définie. Un calcul direct donne la formule:

$$\partial (e \cap \alpha) = (-1)^k \partial e \cap \alpha + e \cap \delta \alpha, e = m \otimes_{\pi} z \in M \otimes_{\pi} C_i(\tilde{X}).$$

Cette formule montre que le cap-produit ci-dessus induit un cap-produit en homologie:

$$\cap: H_i(X; M) \times H^k(X; N) \to H_{i-k}(X; M \otimes N)$$

Parmi les nombreuses propriétés classiques du cap-produit, nous allons en dégager quatre que nous prouverons être caractéristiques au § 3. Nous introduisons directement le langage qui sera utilisé au § 3.

(1.1) Proposition. La famille d'applications

$$\Phi_X^{ik}(M, N): H_i(X; M) \times H^k(X, N) \to H_{i-k}(X; M \otimes N)$$

donnée par le cap-produit $\Phi_X^{ik}(M,N)(z,\alpha)=z\cap\alpha$ satisfait aux propriétés I, II, III et IV décrite ci-dessous.

Propriété I: Soit $f: X \to Y$ une application continue entre CWcomplexes connexes par arc. Soit M un $\pi_1(Y)$ -module à droite et Nun $\pi_1(Y)$ -module à gauche, qui seront aussi considérés au besoin comme $\pi_1(X)$ -modules via l'homomorphisme $\pi_1 f$. Alors, pour tout $z \in H_i(X; M)$ et $\alpha \in H^k(Y; N)$ on a la formule:

$$f_* \Phi_X^{ik}(M, N) (z, f^*(\alpha)) = \Phi_Y^{ik}(M, N) (f_*(z), \alpha).$$

Propriété II: Soit $0 \to N' \to N \to N'' \to 0$ une suite exacte de π -modules à gauche. Soit M un π -module à droite et S le π -module $\ker (M \otimes N \to M \otimes N'')$. On a donc une suite exacte courte

$$0 \to S \to M \otimes N \to M \otimes N'' \to 0$$

et une surjection $\mu: M \otimes N' \twoheadrightarrow S$. Alors, le diagramme suivant est commutatif:

$$H_{i}(X; M) \times H^{k}(X; N'') \xrightarrow{\Phi_{X}^{ik}(M, N'')} H_{i-k}(X; M \otimes N'')$$

$$id \times \delta \qquad H_{i-k-1}(X; S)$$

$$H_{i}(X; M) \times H^{k+1}(X; N') \xrightarrow{\Phi_{X}^{i(k+1)}(M, N')} H_{i-k-1}(X; M \otimes N') \qquad \mu_{*}$$

Propriété III: Soit $0 \to M' \to M \to M'' \to 0$ une suite exacte de π -modules à droite. Soit N un π -module à gauche et T le π -module $\ker(M \otimes N \to M'' \otimes N)$. On a donc une suite courte $0 \to T \to M \otimes N \to M'' \otimes N \to 0$ et une surjection $v: M' \otimes N \to T$. Alors, le diagramme suivant est $(-1)^k$ -commutatif:

$$H_{i}(X, M'') \times H^{k}(X; N)$$

$$0 \times id$$

$$H_{i-k-1}(X; M') \times H^{k}(X; N)$$

$$H_{i-k-1}(X; M') \times H^{k}(X; N)$$

$$\Phi_{X}^{(i-1)k}(M', N) \longrightarrow H_{i-k-1}(X; M' \otimes N)$$

$$0 \times id$$

$$H_{i-k-1}(X; M') \times H^{k}(X; N)$$

Pour énoncer la propriété IV on utilise les identifications classiques:

$$H_0\left(X\,;\,M\right)\,=\,M\,\,\bigg/\,\,\big\{m\text{-}\,m\alpha\mid m\in M,\,\alpha\in\mathbf{Z}\,\pi\big\}\,,$$

$$H^0\left(X\,;\,N\right)\,=\,\big\{n\in N\mid gn\,=\,n\quad\text{ pour tout }\quad g\in\pi\big\}\,\subset\,N\,\,.$$

On vérifie que l'application $M \times H^0(X; N) \subset M \times N \to M \otimes N$ donnée par $(m, n) \to m \otimes n$ produit, par passage aux quotients, une application $H_0(X; M) \times H^0(X; N) \to H_0(X; M \otimes N)$ que l'on notera $(m, n) \mapsto m \otimes n$.

Propriété IV: $\phi_X^{00}(M, N)(m, n) = m \otimes n$.

2. Le théorème de caractérisation

(2.1) THÉORÈME. Soit

$$\phi_X^{ik}(M,N): H_i(X;M) \times H^k(X;N) \to H_{i-k}(X;M \otimes N)$$

une famille d'applications définies pour tout $i, k \ge 0$ et tout triple (X, M, N), où X est un CW-complexe connexe par arc, M un $\pi_1(X)$ -module à droite et N un $\pi_1(X)$ -module à gauche. Supposons que la famille $\phi_X^{ik}(M,N)$ satisfait aux propriétés I à IV. Alors $\phi_X^{ik}(M,N)$ $(z,\alpha)=z\cap\alpha$, sauf peut-être lorsque i=k>0. Cette dernière restriction est inutile lorsque M est sans Z-torsion ou que N est un $F\pi_1(X)$ -module pour un corps F.

Le reste de ce paragraphe est dévolu à la démonstration du théorème (2.1). Un théorème de Kan-Thurston [KT] affirme que, pour tout