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PROPRIETES CARACTERISTIQUES
DU CAP-PRODUIT A COEFFICIENTS LOCAUX

par Jean-Claude HAUSMANN et Antoine ZAHND

Soit X un CW-complexe connexe par arc et soient M et N deux
n,(X)-modules. Le but de cet article est de caractériser la famille d’appli-
cations « cap-produit »:

H;(X; M) x H*(X;N) - H;_(X; M ® N)

(z,) >z N

par quatre de ses propriétés: naturalit¢ en X, comportement par rapport
aux suites exactes courtes de coefficients (en M et en N) ainsi que des-
cription explicite en dimension i = k = 0. La caractérisation est complete,
sauf peut-étre dans le cas i = k > 0 ou notre technique nécessite ’hypothéese
que M est sans Z-torsion ou que N est un Fn,(X)-module pour un
corps F (Théoreéme (2.1)). ‘

Un point essentiel de notre démonstration est I'utilisation du théoreme
de Kan-Thurston [KT] qui permet de se ramener au cas ou X est un
espace d’Eilenberg-MacLane K (r, 1). Dans ce cas, la naturalité en X n’est
méme plus nécessaire (Proposition (2.2)).

Le § 3 contient quelques remarques et suggestions d’applications.

Les auteurs remercient M. Kervaire pour d’utiles conversations.

1. DEFINITION ET PROPRIETES DU CAP-PRODUIT

Soit X un CW-complexe. Soit S;(X) I'ensemble des j-simplexes singuliers
de X, i.e. des applications continues ¢: A’ - X, ou

N = {(xg, .. x;) ERT | x, 20 et Zx, =1}.

Le groupe C;(X) des j-chaines singuliéres de X est le groupe abélien
libre de base S;(X). Pour i,k <j, on définit la i* face avant ic: Al —» X
st la k¢ face arriére o*: A* > X de o € S;(X) de la fagon habituelle:
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G (X9, .. X;) = O (Xg, - X;, 0, ..., 0)

O-k (xO 9 seey Xk) = O (O, ceey 0, xO 5 veey Xk)

Supposons dorénavant que X est connexe par arc et soit X son revé- \
tement universel. L’action de m = m,(X) sur X munit le groupe Cj()f);;-f
d’une structure de m-module (a gauche). Ce n-module est m-libre de basez
{6loeS;(X)} = S;(X), ot 5e5;(X) est un relevé de e S;(X). Lopé-
rateur bord J: C; X) - Cj_,(X~) est l'application n-linéaire définie sur.

5 e S;(X) par

o

a&(xo,...,xj'__l) = Z ( — 1)r(~)'(X0,.,x,,_l,o,xr,...,xj_l).

r=0

Soit M un m-module a droite. Le groupe d’homologie H, (X ; M) est

defini comme le r® groupe d’homologie du complexe

Si N est un m-module a gauche, le groupe de cohomologie H" (X; N) est

le r® groupe d’homologie du complexe (Hom, (C, (X); N); 8), ou & (o) (z) =
( — 1y - o (d(z) pour z € C, (X).
Le cap produit:

N (M ®, C; (X)) x Hom, (C, (X); N) > (M ® N) ®, Ci—, (X)

est Papplication Z-bilinéaire qui, pourme M, 5 € S;(X) et o e Hom,(Cy (X); N
a pour définition:

m®,86)na=(mQQas) ®,65 .

Le symbole ® dénote le produit sur Z par opposition a @, qui désigne
celui sur Zw. Le groupe M @ N est muni de la structure de m-module
a droite donnée par m @ n)g = mg ® g~ * n. Grice a cette structure, or
vérifie immédiatement que I'application « cap-produit » ci-dessus est bier
définie. Un calcul direct donne la formule:

dlena)=(—1fdena+endu,e=m®,zeM ®,C;(X).

Cette formule montre que le cap-produit ci-dessus induit un cap-produit
en homologie:

N:H; (X; M) x H*(X;N) > H;, (X; M ® N)

Parmi les nombreuses propriétés classiques du cap-produit, nous allons
en dégager quatre que nous prouverons étre caractéristiques au §3. Nous
introduisons directement le langage qui sera utilisé au § 3.
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(1.1) PROPOSITION. La famille d’applications
O¥(M, N): H; (X; M) x H*(X,N) - H;_, (X; M ® N)

donnée par le cap-produit ®¥ (M, N)(z, ) = z "o satisfait aux pro-
prietés I, 11, 111 et IV décrite ci-dessous.

Proprieté 1: Soit f: X - Y une application continue entre CW-
complexes connexes par arc. Soit M un 7, (Y)-module a droite et N
un 7w, (Y)-module a gauche, qui seront aussi considérés au besoin comme
n, (X)-modules via 'homomorphisme w, f. Alors, pour tout ze H; (X ; M)
et . € H*(Y; N) on a la formule:

fi ©% (M, N) (2, f* () = @F (M, N) (£, (2), o).

Propriété II: Soit 0 > N> N - N” - 0 une suite exacte de n-
modules a gauche. Soit M un n-module a droite et S le m-module
ker(M @ N - M ® N”). On a donc une suite exacte courte

OS> MRIN->-MKN' -0

et une surjection p: M @ N'—- S. Alors, le diagramme suivant est com-
mutatif:

o

H(X; M) x HYX: N") O¥M. N _ H, (X: MQN")

id x & H;, , (X;8)

|

H(X;M) x H*YXGN) X PMN) g x: MmNy s

Propriété 111: Soit 0 > M’ - M — M” - 0 une suite exacte de 7-
modules a droite. Soit N un n-module a gauche et T le t-module ker (M® N
M QN). On a donc une suite courte 0T — M QN -
M" ® N — 0 et une surjection v: M’ @ N - T- Alors, le diagramme suivant
est (— 1)*-commutatif:
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H{X, M") x HYX; N) Ox(M".N) _ _ H, (X;M'®N)
\ a
_ AN
J0 x id H;, ,_ (X;T)

Y . /
Hi_(X; M) x H(X;N) _ Q%" "M N) _ g, (X; M®N)/ Vs

AN

Pour énoncer la propriété IV on utilise les identifications classiques:

H,(X; M) = M/{m-moclmeM,oceZn},

H°(X;N) = {neN|gn=n our tout gemn} CN.
p

On vérifie que lapplication M x H°(X;N)CM x N> M ® N
donnée par (m,n) > m @ n produit, par passage aux quotients, une appli-
cation Hy, (X ;M) x H°(X; N) » Hy(X; M ® N) que l'on notera (m, n) —

m @ n.

Propriété 1V: &% (M, N)(m,n) = m @ n.

2. LE THEOREME DE CARACTERISATION

(2.1) THEOREME. Soit
¥(M,N):H,(X; M) x H*(X;N) > H,_, (X; M ® N)

une famille dapplications définies pour tout i,k >0 et tout triple
(X, M,N), ou X est un CW-complexe connexe par arc, M un
7, (X)-module a droite et N un mn(X)-module a gauche. Supposons que la
famille % (M, N) satisfait aux propriétés 1 a IV. Alors ¥ (M, N)
(z,o) = z N o, sauf peut-étre lorsque i = k > 0. Cette derniére restriction
est inutile lorsque M est sans Z-torsion ou que N est un Fm, (X)-

; f

module pour un corps F. |
Le reste de ce paragraphe est dévolu a la démonstration du théo- ||
réme (2.1). Un théoréme de Kan-Thurston [KT] affirme que, pour tout |
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