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PROPRIETES CARACTERISTIQUES
DU CAP-PRODUIT A COEFFICIENTS LOCAUX

par Jean-Claude HAUSMANN et Antoine ZAHND

Soit X un CW-complexe connexe par arc et soient M et N deux
n,(X)-modules. Le but de cet article est de caractériser la famille d’appli-
cations « cap-produit »:

H;(X; M) x H*(X;N) - H;_(X; M ® N)

(z,) >z N

par quatre de ses propriétés: naturalit¢ en X, comportement par rapport
aux suites exactes courtes de coefficients (en M et en N) ainsi que des-
cription explicite en dimension i = k = 0. La caractérisation est complete,
sauf peut-étre dans le cas i = k > 0 ou notre technique nécessite ’hypothéese
que M est sans Z-torsion ou que N est un Fn,(X)-module pour un
corps F (Théoreéme (2.1)). ‘

Un point essentiel de notre démonstration est I'utilisation du théoreme
de Kan-Thurston [KT] qui permet de se ramener au cas ou X est un
espace d’Eilenberg-MacLane K (r, 1). Dans ce cas, la naturalité en X n’est
méme plus nécessaire (Proposition (2.2)).

Le § 3 contient quelques remarques et suggestions d’applications.

Les auteurs remercient M. Kervaire pour d’utiles conversations.

1. DEFINITION ET PROPRIETES DU CAP-PRODUIT

Soit X un CW-complexe. Soit S;(X) I'ensemble des j-simplexes singuliers
de X, i.e. des applications continues ¢: A’ - X, ou

N = {(xg, .. x;) ERT | x, 20 et Zx, =1}.

Le groupe C;(X) des j-chaines singuliéres de X est le groupe abélien
libre de base S;(X). Pour i,k <j, on définit la i* face avant ic: Al —» X
st la k¢ face arriére o*: A* > X de o € S;(X) de la fagon habituelle:
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G (X9, .. X;) = O (Xg, - X;, 0, ..., 0)

O-k (xO 9 seey Xk) = O (O, ceey 0, xO 5 veey Xk)

Supposons dorénavant que X est connexe par arc et soit X son revé- \
tement universel. L’action de m = m,(X) sur X munit le groupe Cj()f);;-f
d’une structure de m-module (a gauche). Ce n-module est m-libre de basez
{6loeS;(X)} = S;(X), ot 5e5;(X) est un relevé de e S;(X). Lopé-
rateur bord J: C; X) - Cj_,(X~) est l'application n-linéaire définie sur.

5 e S;(X) par

o

a&(xo,...,xj'__l) = Z ( — 1)r(~)'(X0,.,x,,_l,o,xr,...,xj_l).

r=0

Soit M un m-module a droite. Le groupe d’homologie H, (X ; M) est

defini comme le r® groupe d’homologie du complexe

Si N est un m-module a gauche, le groupe de cohomologie H" (X; N) est

le r® groupe d’homologie du complexe (Hom, (C, (X); N); 8), ou & (o) (z) =
( — 1y - o (d(z) pour z € C, (X).
Le cap produit:

N (M ®, C; (X)) x Hom, (C, (X); N) > (M ® N) ®, Ci—, (X)

est Papplication Z-bilinéaire qui, pourme M, 5 € S;(X) et o e Hom,(Cy (X); N
a pour définition:

m®,86)na=(mQQas) ®,65 .

Le symbole ® dénote le produit sur Z par opposition a @, qui désigne
celui sur Zw. Le groupe M @ N est muni de la structure de m-module
a droite donnée par m @ n)g = mg ® g~ * n. Grice a cette structure, or
vérifie immédiatement que I'application « cap-produit » ci-dessus est bier
définie. Un calcul direct donne la formule:

dlena)=(—1fdena+endu,e=m®,zeM ®,C;(X).

Cette formule montre que le cap-produit ci-dessus induit un cap-produit
en homologie:

N:H; (X; M) x H*(X;N) > H;, (X; M ® N)

Parmi les nombreuses propriétés classiques du cap-produit, nous allons
en dégager quatre que nous prouverons étre caractéristiques au §3. Nous
introduisons directement le langage qui sera utilisé au § 3.
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(1.1) PROPOSITION. La famille d’applications
O¥(M, N): H; (X; M) x H*(X,N) - H;_, (X; M ® N)

donnée par le cap-produit ®¥ (M, N)(z, ) = z "o satisfait aux pro-
prietés I, 11, 111 et IV décrite ci-dessous.

Proprieté 1: Soit f: X - Y une application continue entre CW-
complexes connexes par arc. Soit M un 7, (Y)-module a droite et N
un 7w, (Y)-module a gauche, qui seront aussi considérés au besoin comme
n, (X)-modules via 'homomorphisme w, f. Alors, pour tout ze H; (X ; M)
et . € H*(Y; N) on a la formule:

fi ©% (M, N) (2, f* () = @F (M, N) (£, (2), o).

Propriété II: Soit 0 > N> N - N” - 0 une suite exacte de n-
modules a gauche. Soit M un n-module a droite et S le m-module
ker(M @ N - M ® N”). On a donc une suite exacte courte

OS> MRIN->-MKN' -0

et une surjection p: M @ N'—- S. Alors, le diagramme suivant est com-
mutatif:

o

H(X; M) x HYX: N") O¥M. N _ H, (X: MQN")

id x & H;, , (X;8)

|

H(X;M) x H*YXGN) X PMN) g x: MmNy s

Propriété 111: Soit 0 > M’ - M — M” - 0 une suite exacte de 7-
modules a droite. Soit N un n-module a gauche et T le t-module ker (M® N
M QN). On a donc une suite courte 0T — M QN -
M" ® N — 0 et une surjection v: M’ @ N - T- Alors, le diagramme suivant
est (— 1)*-commutatif:
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H{X, M") x HYX; N) Ox(M".N) _ _ H, (X;M'®N)
\ a
_ AN
J0 x id H;, ,_ (X;T)

Y . /
Hi_(X; M) x H(X;N) _ Q%" "M N) _ g, (X; M®N)/ Vs

AN

Pour énoncer la propriété IV on utilise les identifications classiques:

H,(X; M) = M/{m-moclmeM,oceZn},

H°(X;N) = {neN|gn=n our tout gemn} CN.
p

On vérifie que lapplication M x H°(X;N)CM x N> M ® N
donnée par (m,n) > m @ n produit, par passage aux quotients, une appli-
cation Hy, (X ;M) x H°(X; N) » Hy(X; M ® N) que l'on notera (m, n) —

m @ n.

Propriété 1V: &% (M, N)(m,n) = m @ n.

2. LE THEOREME DE CARACTERISATION

(2.1) THEOREME. Soit
¥(M,N):H,(X; M) x H*(X;N) > H,_, (X; M ® N)

une famille dapplications définies pour tout i,k >0 et tout triple
(X, M,N), ou X est un CW-complexe connexe par arc, M un
7, (X)-module a droite et N un mn(X)-module a gauche. Supposons que la
famille % (M, N) satisfait aux propriétés 1 a IV. Alors ¥ (M, N)
(z,o) = z N o, sauf peut-étre lorsque i = k > 0. Cette derniére restriction
est inutile lorsque M est sans Z-torsion ou que N est un Fm, (X)-

; f

module pour un corps F. |
Le reste de ce paragraphe est dévolu a la démonstration du théo- ||
réme (2.1). Un théoréme de Kan-Thurston [KT] affirme que, pour tout |
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CW-complexe connexe par arc X, on peut trouver une application
X TX - X telle que:

a) fX:H,(TX; P) - H, (X, P) est un isomorphisme pour tout
7, (X)-module P
b) TX = K(n,(TX),1), ie  TX estcontractile.

Ce résultat permet de réduire la démonstration du theoreme (2.1) au
cas d’espace d’Eilenberg-McLane. Le cas général découlera du calcul suivant
(avec les abréviations ¢ = O (M, N) et f = f¥):

Yza) = OF(f (), &) =[x (0 f* (@) = fL (V0 f* (@) = z0a.

La propriété I ne sera plus utilisée, car nous allons démontrer la pro-
position suivante:

(2.2). PropoOSITION. Soit X = K(m, 1). Soit
O*M,N):H,(X;M) x H*(X;N)> H,_,(X; M ® N)

une famille dapplications définies pour tout i,k = 0, tout m-module a
droite M et tout m-module a gauche N. Si &% (M, N) satisfait aux
propriétés 11, III et IV, alors &% (M, N)(z,o) = z na, sauf peut-étre
pour i =k > 0. Lorsque M est sans Z-torsion ou que N est un
Fr-module pour un corps F, on a également " (M, N)(z, o) = z N o

Démonstration. Considérons les énonceés suivants:

H(i, k): &* (M, N)(z, ) = z N o, pour toute paire (M, N) de
n-modules comme dans I’énoncé de (2.2).

H(i, k): &% (M, N) (z, ) = z n o pour toute paire (M, N) de
n-modules comme dans I’énoncé de (2.2), avec M
sans Z-torsion ou N un Fr-module.

L’hypothese #° (0,0) est vraie: elle est équivalente 4 la propriété IV.
On va démontrer tout d’abord les deux lemmes suivants:

LEMME 1. Pour tout i >k >0 H'(i,k) entraine H#'(i, k+1).

LEMME 2. 7' (i,0) entraine #'(i+1,0).

Puisque # (0, 0) est vraie, les lemmes 1 et 2 impliquent que " (i, k)
“st vraie pour tout i, k = 0. On démontrera enfin le
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LemMME 3. ' (i, k) pour tout i, k, entraine # (i, k) lorsque i > k,
ce qui achevera la démonstration de (2.2).

Démonstration du lemme 1. Soit (M, N) une paire de m-module comme
dans I'énoncé #" (i, k+1). Considérons une suite exacte de m-modules a
gauche 0 > N - I - Q - 0 avec I un n-module injectif. Comme M est
sans Z-torsion, la suitt 0 > M I N - MR ->MK QO —> 0 est aussi
exacte et le diagramme de la proprieté II se réduit & un diagramme
commutatif carré:

H{X; M) x HYX; Q) OHM Q) H,_(X;M®OQ)

id x & %,

H(X:M) x B (x;N) _®P""MN) g (X M®N)

Comme I est injectif et X = K(m,1), on a H(X;I) = 0 pour j > 0
et donc &: HYX; Q) » H*"}(X; N) est surjectif pour k > 0. On a donc,
en utilisant J#7; ,,:

GV (M, N) (z,0) = &7V (M, N) (2,8 (B) =
= (¢ M, Q) (z,B) = dznP) = znua,

ce qui prouve H'(i,k + 1) lorsque M est sans Z-torsion. Dans le cas
ou N est un Fr-module, on procede de méme: on prend une suite
0> N->1-0 -0, avec I un Frn-module injectif. Une telle suite étant
Z-scindée, la suite 0 - M I N->-M Q]I > M QS Q — 0 est encore exacte.

Démonstration du Lemme 2. Soit (M, N) une paire de module comme
dans I’énoncé de (2.2). Considérons une suite exacte de m-modules a droite
0> K—->L—->M -0 avec L un n-module libre. On en déduit une suite
exacte 0 > T>LQ®N->MQ®N — 0 et une surjection v: K N » T.
Observons que K est sans Z-torsion; on peut donc appliquer ’hypothése
H oy a la paire (K, N). Ceci, combiné avec la propriété III permet le
calcul suivant:

AP0 (M, N)(z, ) = (— 1) Ov, (¢ (K, N) (0z, a)) = v (0z na) =
=0dzna).
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Pour prouver #'(i + 1, 0), il suffit donc d’¢tablir que
0:H;,;(X; M ®N) - - H (X;T)
est injectif pour i > 0. On a la suite exacte:
Hioy (XGLON) > Hiy (XM @ N) > Hi (X T),

d’ou l'injectivité de 0 est conséquence du lemme suivant:

(2.3) LEemME.  Soit X = K(m, 1), N un m-module a gauche et L un
n-module libre. Alors H;(X;L @ N) = 0 pour j > 0.

Démonstration. Grace a l’istorphisme
Hj(X;(Ll @L2)®N) = H;(X; L, @N)® H;j(X;L, ® N),
il suffit de démontrer (2.3) pour L = Zn. Rappelons que

PR,0 = HoX;P®Q)
(voir [Br, p. 55]). On a alors:

(Zn ® N) ®, C;(X) = Ho(X;(Zn ® N) ® C;(X)) =
= Hy(X;Zn ® (N ® C;(X)) = Zn ®,(N ® C;(X)) =
= N® C;(X).

On en déduit que H;(X;Zn ® N) = H;(X; N) = 0, la derniére égalité
étant due au fait que X est contractile.

Démonstration du lemme 3. 1l suffit de démontrer que #” (i, k) implique
H@i + 1,k) pour i >k Soient M un m-module a droite et N un
n-module 4 gauche. Choisissons une suite exacte 0 - K - L - M — 0 avec
L un Zn-module libre. Comme K est sans Z-torsion, ’hypothese #" (i, k)
et le méme raisonnement que pour la démonstration du lemme 2 montrent
que ¢ DE(M, N)(z, o) = z N o

3. REMARQUES, APPLICATIONS
1) La preuve du théoréme (2.1) utilise abondamment le fait que 'on a

affaire 2 I'homologie et a la cohomologie a coefficients locaux. Notre
méthode ne donne donc pas de caractérisation du cap-produit pour ’homo-
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logie et la cohomologie a coeflicients constants. De méme, et curieusement,
elle ne semble pas permettre de montrer que des propriétés analogue§
a I-IV puissent caractériser le cup-produit. Observons qu’'une telle caracté:
risation du cup-produit existe pour la cohomologie des groupes finis (voir,

[Ws, §4.2]).

2) Nous ignorons si les propriétés I a IV impliquent que

Y(M, N)(z,a) = z n o sans les hypothéses restrictives sur M ou N(n > 0).1‘
Observons que le cap-produit

H*(X; M) x H,(X;N)—> Ho(X; M ® N)
est induite par 'application « évaluation »:
(M ®, C,(%) x Hom,(C,(%); N) > M ®,N
(m@gz,0) = mQ uz).

3) Supposons que la famille d’applications ¢% (M, N) soit induite par
une famille d’applications:

¥ (M, N): (M ®,C;(X) x Hom,(C(X); N) > (M ® N) ®, C;—,(X)
telle que
00" (z, o) = (= 1) ¥(dz, ) + @"*"1(z, 80) (9™ = ¢k (M, N)).
Alors, les conditions II et III du théoréeme (2.1) sont automatiquemert
vérifiées.

4) Une caractérisation axiomatique du cap-produit telle que celle pré-
sentée dans cet article peut étre utile pour reconnaitre cette opération
exprimée dans d’autres theories homologiques (homologie simplicial,
cubique, etc.). Si W, : H,(X; M) S H, (X; M) et ¥*: H*(X; N) 5 H*X; M)
sont des isomorphismes de théories (co-)homologiques et si

A H(X; M) x HY(X;N) > H,_,(X; M ® N)

est un cap-produit satisfaisant aux propriétés I a IV, alors W, (z A o) =:
W, (z) n W*(o) (avec les restrictions sur M du théoréme (2.1)).
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