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PROPRIÉTÉS CARACTÉRISTIQUES

DU CAP-PRODUIT À COEFFICIENTS LOCAUX

par Jean-Claude Hausmann et Antoine Zahnd

Soit X un C VF-complexe connexe par arc et soient M et A deux

k1 (X)-modules. Le but de cet article est de caractériser la famille d'applications

« cap-produit » :

/f<(X;M) x Hk (X ; N) _ k (X ; M <g> N)

(z, a) h* z n a

par quatre de ses propriétés: naturalité en X, comportement par rapport
aux suites exactes courtes de coefficients (en M et en N) ainsi que
description explicite en dimension i k — 0. La caractérisation est complète,
sauf peut-être dans le cas i k > 0 où notre technique nécessite l'hypothèse

que M est sans Z-torsion ou que N est un Fkx (X)-module pour un

corps F (Théorème (2.1)).

Un point essentiel de notre démonstration est l'utilisation du théorème
de Kan-Thurston [KT] qui permet de se ramener au cas où X est un

espace d'Eilenberg-MacLane K (n, 1). Dans ce cas, la naturalité en X n'est
même plus nécessaire (Proposition (2.2)).

Le § 3 contient quelques remarques et suggestions d'applications.
Les auteurs remercient M. Kervaire pour d'utiles conversations.

1. Définition et propriétés du cap-produit

Soit X un C VF-complexe. Soit Sj(X) l'ensemble des y-simplexes singuliers
de X, i.e. des applications continues a : Aj -> X, où

AJ' « {(x0,..., Xj) g Rj+1 \xr^0 et 1}

Le groupe Cj(X) des y-chaînes singulières de X est le groupe abélien
libre de base Sj(X). Pour /, k ^ y, on définit la F face avant 1<j: Af -> X
et la /ce face arrière <jk: Ak - X de a g Sj(X) de la façon habituelle:
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'a (x0,... Xt) a {x0,... xt, 0,..., 0)

Gk (X0 Xk) G (0, 0, X0 Xk I

Supposons dorénavant que X est connexe par arc et soit X son revê-li

tement universel. L'action de n n1(X) sur X munit le groupe Cj(X)l
d'une structure de Ti-module (à gauche). Ce 7i-module est 7i-libre de base;

{à \ g e Sj(X)} c= Sj(X), où àeSj(X) est un relevé de g g Sj(X). L'opé-1
rateur bord ô: Cj (X) -+ Cj-^X) est l'application rc-linéaire définie sur!
à e Sj (X) par

j
ôà(x0,...,xJ-l) £ _ l)rô(x0,.,xr_!,0,

r 0

Soit M un 7c-module à droite. Le groupe d'homologie Hr (X ; M) est

défini comme le re groupe d'homologie du complexe

(M (g)nC, (X);idM ®nd).

Si N est un 7i-module à gauche, le groupe de cohomologie Hr (X ; N) est

le re groupe d'homologie du complexe (Homn (C^ (X) ; N) ; ô), où 5 (a) (z)

— Vf • a (d(z)) pour z e Cr (X).
Le cap produit :

n : (M ^ (J?)) x Homn {Ck (X); N) - (M ® N) ®n C^k (X)

est l'application Z-bilinéaire qui, pour me M, g e S,(X) et oc g Homn(Ck (X) ; N)

a pour définition :

(m ®„ ct) n a (m ® a(ka)) ai-k.

Le symbole (g) dénote le produit sur Z par opposition à ®n qui désigne

celui sur Zn. Le groupe M (g) N est muni de la structure de Ti-moduk
à droite donnée par (m (g) n) g mg (g) g~x n. Grâce à cette structure, on

vérifie immédiatement que l'application « cap-produit » ci-dessus est bier
définie. Un calcul direct donne la formule:

ô (e n oc) — l)k de n a + e n ôoe, e m <g)n z g M ®n Ct (X).

Cette formule montre que le cap-produit ci-dessus induit un cap-produil
en homologie :

n:Hi(X;M) x Hk (X ; N) -> H^k(X;M (g) A/")

Parmi les nombreuses propriétés classiques du cap-produit, nous allons

en dégager quatre que nous prouverons être caractéristiques au §3. Nous
introduisons directement le langage qui sera utilisé au § 3.
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(1.1) Proposition. La famille d'applications

0£(M, N): Ht (X; M) x Hk (X, N) H^k (X;M ® N)

donnée par le cap-produit O* (M, i¥) (z, a) z n a satisfait aux
propriétés /, II, III et IV décrite ci-dessous.

Propriété I: Soit f:X-+Y une application continue entre CFP-

complexes connexes par arc. Soit M un nl (y)-module à droite et N
un k (y)-module à gauche, qui seront aussi considérés au besoin comme
n1 (X)-modules via l'homomorphisme n1f Alors, pour tout z g (X ; M)
et a g Hk (y ; N) on a la formule :

/„ O* (M, N) (z,/* (a)) Oy (M, A) (/* (z), a).

Propriété II : Soit 0 - N' -* N -> N" - 0 une suite exacte de tt-
modules à gauche. Soit M un rc-module à droite et S le Ti-module
her (M (g N -> M (g) N"). On a donc une suite exacte courte

et une surjection p : M (g A' -» S. Alors, le diagramme suivant est com-
mutatif:

H,1.X ; M) x Hk{X;N") HP^

1U X ° S)

Hi(X;M) x Hk+1{X;N')^f
+ 1\M,N')

; M<g>iV')

Propriété III:Soit0 -> M' -> M -» M" -> 0 une suite exacte de 71-

modules à droite. Soit iV un 7t-module à gauche et T le rc-module fcer (iW (g) N
M" (V) A/). On a donc une suite courte 0 -> T M N

M (g) N —» 0 et une surjection v : M7 (g N T. Alors, le diagramme suivant
est — l)fc-commutatif :
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Ht(X, M") x Hk(X; N)

d

\(3 x id

Hi.^X; M') x H\X; N) 0<* yw)/ u*

Pour énoncer la propriété IV on utilise les identifications classiques:

H° (X ; N) {ne N \ gn n pour tout g e n} C N

On vérifie que l'application M x H° {X ; N) C M x N - M (g) N
donnée par (m, n) - m (g) n produit, par passage aux quotients, une
application H0 (X ;M) x H° (X ; N) H0 (X ; M <g) N) que l'on notera (m, n) f—

m 0 n.

Propriété IV : (j)£° (M, iV) (m, n) m (g n.

(2.1) Théorème. So/t

cj)£ (M, N): H; (V; M) x Hk (X; N)-> Ht_k (V; M (g) JV)

ime famille d'applications définies pour tout i, k ^ 0 et towt tnp/e
(2f, M, N), ofi est un CW-complexe connexe par arc, M tm

% (X)-module à droite et N un nfiXfrnodule à gauche. Supposons que la

famille cj\>x(M,N) satisfait aux propriétés I à IV. Alors <\)$ (M, N)
(z, a) z n oc, sauf peut-être lorsque i k > 0. Cette dernière restriction
est inutile lorsque M est sans Z-torsion ou que N est un Fn1 (X)-
module pour un corps F.

Le reste de ce paragraphe est dévolu à la démonstration du théorème

(2.1). Un théorème de Kan-Thurston [KT] affirme que, pour tout

H0(X ; M) M / {m- ma | m e M, a e Z tc}

2. Le théorème de caractérisation
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CW-complexe connexe par arc X, on peut trouver une application

fx: TX -» X telle que :

a) fl : {TX ; P) -> H* {X ; P) est un isomorphisme pour tout

n1 (V)-module P

b) TX K(nfTX), 1), i.e. TX est contractile.

Ce résultat permet de réduire la démonstration du théorème (2.1) au

cas d'espace d'Eilenberg-McLane. Le cas général découlera du calcul suivant

(avec les abréviations (j)* (M, N) et / fx) :

($ (z, a) (/* (y), a) /^'rkx (y,/* (a)) /„ (y n/* (a)) z n a

La propriété I ne sera plus utilisée, car nous allons démontrer la

proposition suivante :

(2.2). Proposition. Soit X K{n, 1). Soit

4>ifc (M, N) : Hi {X ; M) x Hk (X ; N) -+ Hi_k{X\M (g) N)

imc famille d'applications définies pour tout I, k ^ 0, tout n-module à

droite M et tout n-module à gauche N. Si cj)l/c (M, iV) satisfait aux
propriétés II, III et IV, alors (|)lfe (M, N) (z, a) z n a, sauf peut-être

pour i k > 0. Lorsque M est sans Z-torsion ou que N est un

Fn-module pour un corps F, on a également <j)n (M, N) (z, a) z n a.

Démonstration. Considérons les énoncés suivants :

Xf{i, k): <|)lfc (M, N) (z, a) z n a, pour toute paire (M, N) de

7r-modules comme dans l'énoncé de (2.2).

yfl{i, k) : §lk (M, N) (z, cl) z n a pour toute paire (M, N) de

Ti-modules comme dans l'énoncé de (2.2), avec M
sans Z-torsion ou N un Fra-module.

L'hypothèse XL (0, 0) est vraie : elle est équivalente à la propriété IV.
On va démontrer tout d'abord les deux lemmes suivants :

Lemme 1. Pour tout i^kXO Xfx {i, k) entraîne XL1 {i, k + 1).

Lemme 2. Xfx (i, 0) entraîne Xfx (i + 1, 0).

Puisque Xe (0, 0) est vraie, les lemmes 1 et 2 impliquent que Xfx {i, k)
^st vraie pour tout z, k X 0. On démontrera enfin le
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Lemme 3. Jf7' (i, k) pour tout i, k, entraîne J-f (i, k) lorsque i > k,

ce qui achèvera la démonstration de (2.2).

Démonstration du lemme 1. Soit (M, N) une paire de ît-module comme
dans l'énoncé Jf'(z,/c+1). Considérons une suite exacte de ît-modules à

gauche 0->N-»J-»<2-»0 avec I un ît-module injectif. Comme M est

sans Z-torsion, la suite 0-»M(g)iV-*M(g>/->M(g)Q->0 est aussi

exacte et le diagramme de la propriété II se réduit à un diagramme
commutatif carré :

HiX -M) x Hk(X;Q)

id x ô

1>ik(M,

Hi(X ; M) x Hk +1(X;&(k+1){M, AQr

Hi-k(X ; M<S)Q)

d

H,

Comme / est injectif et X K(n, 1), on a Hj(X ; I) 0 pour j > 0

et donc Ô : Hk(X ; Q) -» Hk+ i(X ; N) est surjectif pour k ^ 0. On a donc,

en utilisant fc)
:

(M> jv) (z, a) - <t)f(fc+ X) (M, N) (z, ô (ß))

d(<fyik(M, Q) (z, ß)) d(z n ß) z n a,

ce qui prouve k + 1) lorsque M est sans Z-torsion. Dans le cas

où N est un Fît-module, on procède de même : on prend une suite

0->N->I-+Q-+0, avec / un Fît-module injectif. Une telle suite étant

Z-scindée, la suite 0->M®iV->M<g)/->M(g)ß->0est encore exacte.

Démonstration du Lemme 2. Soit (M, N) une paire de module comme
dans l'énoncé de (2.2). Considérons une suite exacte de ît-modules à droite

avec L un ît-module libre. On en déduit une suite

exacte 0->T->L(g)N->M®./V->0 et une surjection v: K (g) N -» T.

Observons que K est sans Z-torsion; on peut donc appliquer l'hypothèse

Jfjj 0) à la paire (K, N). Ceci, combiné avec la propriété III permet le

calcul suivant:

d(cj)(f' +1)0 (M, N) (z, a)) - 1) X {<\>i0 (K, N) (ôz, a)) « v^dz n a; -
d(z n a).
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Pour prouver Xfl(i 4- 1,0), il suffit donc d'établir que

d: Hi+1(X-,M<8>JV) —* - H,(X;T)

est injectif pour i^0.On a la suite exacte :

Hi+1 {X;L<g>N)->Hi + 1 {X ;M <g> A H, (X ; T),

d'où l'injectivité de ô est conséquence du lemme suivant :

(2.3) Lemme. Soit X K(n, 1), N un n-module à gauche et L un

n-module libre. Alors Hj(X; L ® N) 0 pour 7 > 0.

Démonstration. Grâce à l'isomorphisme

; (Li © L2) ® iV) H,(2f ; L, ® N) © Hj{X ; L2 ® N),

il suffit de démontrer (2.3) pour L Ztl Rappelons que

P(8>nß H0(X;P® ß)

(voir [Br, p. 55]). On a alors:

(Zji <g> N) 0, Cj(X)Ho(X-, (Zng)N) ® C,-(X))

H0{X;Ziz ® {N <%>Zrr <g>„(N «g)

TV <g> Cj(X).

On en déduit que Hj{X; Zn (g N) /T,(X ; TV) 0, la dernière égalité
étant due au fait que X est contractile.

Démonstration du lemme 3. Il suffit de démontrer que J»fr(ï, k) implique
Jf{i + 1 ,k) pour i ^ k. Soient M un Ti-module à droite et N un
ïï-module à gauche. Choisissons une suite exacte 0->K->L->M->0 avec

L un Z7i-module libre. Comme K est sans Z-torsion, l'hypothèse Xf1 (i, /c)

et le même raisonnement que pour la démonstration du lemme 2 montrent
que (j)(I + 1)fc (M, N) (z, a) z n oc.

3. Remarques, applications

1) La preuve du théorème (2.1) utilise abondamment le fait que l'on a
affaire à l'homologie et à la cohomologie à coefficients locaux. Notre
méthode ne donne donc pas de caractérisation du cap-produit pour l'homo-
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!'

logie et la cohomologie à coefficients constants. De même, et curieusement
elle ne semble pas permettre de montrer que des propriétés analogues
à I-IV puissent caractériser le cup-produit. Observons qu'une telle caracté-;;

risation du cup-produit existe pour la cohomologie des groupes finis (voiij!

[Ws, § 4.2]). j

2) Nous ignorons si les propriétés I à IV impliquent que

<\)"x (M, N) (z, a) z n a sans les hypothèses restrictives sur M ou N(n > 0).

Observons que le cap-produit

Hn (X ; M) x Hn (X ; N) H0{X;M (g) N)

est induite par l'application « évaluation » :

(M Cn(X)) x Hornn{Cn(X); N) - M ®nN

(m (g)nz, cl) -> m (g)noc(z).

3) Supposons que la famille d'applications <\>l£ (M, N) soit induite par

une famille d'applications :

cp*(M, N): (M 0nCi(X)) x Hornn(Ck(X); N) -> (M ® N) (g), C^k(X)

telle que

d(pik{z, oc) (-l)V~1,fc(^,a) -h cpf'fc + 1(z,ôa)((pifc - <p£(M, V)).

Alors, les conditions II et III du théorème (2.1) sont automatiquement
vérifiées.

4) Une caractérisation axiomatique du cap-produit telle que celle

présentée dans cet article peut être utile pour reconnaître cette opération

exprimée dans d'autres théories homologiques (homologie simplicialc,

cubique, etc.). Si M) ^ H^X; M) et : H*(X ; N) A H*(X; il)
sont des isomorphismes de théories (co-)homologiques et si

n : Ht (X ; M) x Hk(X;N) H,_fc(V;M <g) N)

est un cap-produit satisfaisant aux propriétés I à IV, alors (z n a) ='

^(z) n *F*(a) (avec les restrictions sur M du théorème (2.1)).

i
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