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METHODE DU CERCLE ADELIQUE 59

§ 5. Exemples d'applications

A) Sur les hypothèses (Hl) et (H2)

La justification de l'hypothèse (Hl) provient de l'emploi de l'inégalité

de Weyl et de ses généralisations pour majorer des sommes trigonométriques

du type 5(a). Il semble que, pour de telles sommes, ce soit la seule méthode

efficace actuellement connue. L'adjectif « efficace » étant un exemple

d'euphémisme.

Le but de ce travail n'étant pas de recopier Birch ou Davenport, mieux

valait se situer en aval, c'est-à-dire partir de l'hypothèse (Hl), quitte à

indiquer ici la méthode qui y conduit, sans démonstrations mais avec des

références bibliographiques qui sont les suivantes :

Birch, «Forms in many variables», paragraphe 2, lemmes 2.1 à 2.5.

Davenport, « Cubic forms in 32 variables », paragraphes 3 et 4.

« Cubic forms in 16 variables », paragraphes 4 et 5.

« Analytic Methods... », paragraphes 3 et 13.

Pour le reste, il faut d'abord remarquer que la démonstration de l'inégalité

de Weyl utilise une succession de différences finies (autant que le degré à

des formes f) portant sur les polynômes présents dans l'exposant de e

(les polynômes f et g en ce qui nous concerne) d'où un résultat indépendant
du polynôme g puisque son degré est inférieur strictement à d. Ainsi la

disparition du polynôme g dans l'hypothèse (Hl), qui ne présente aucun
inconvénient pour les paragraphes 1 à 4 du présent travail, n'a pas d'intérêt
tant que la méthode de Weyl demeurera la seule qui puisse justifier
l'hypothèse (Hl).

L'inégalité de Weyl une fois obtenue, on utilise un résultat de géométrie
des nombres (Birch lemme 2.3, Davenport « 32 variables » lemme (3.3)
« 16 variables » lemme 8) avant d'aboutir à un lemme à trois possibilités
(Birch lemme 2.5, Davenport « Analytic methods », lemme 32, Schmidt
« Simultaneous rational zeros... », lemme 3).

La première possibilité est une bonne majoration du module de 5(a)
du type Pn~k où k > 0 est un paramètre.

La seconde possibilité est une bonne approximation rationnelle de a,
précisément celle de l'hypothèse (Hl) ii), associée à un second paramètre
A > 0.

La troisième possibilité est la mauvaise: celle qui ne garantit aucune des
deux précédentes. Toutefois elle exprime une condition (compliquée) qui ne
concerne pas a mais seulement les formes ft.
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Ainsi, chez tous les auteurs la règle est-elle la même: attribuer aux
formes ft une propriété T, plus ou moins laide, qui soit suffisante pour
exclure la troisième possibilité et donc garantir l'hypothèse (Hl) qui n'est

autre que l'union des deux premières possibilités (poser k AQ)\
Mais ce n'est pas suffisant car pour exploiter convenablement, par la

méthode du cercle de Hardy et Littlewood, l'hypothèse (Hl) il faut disposer
d'un bon accord entre les paramètres k et À, plus précisément de l'hypothèse

(H2) :

Ainsi équipé le système / peut affronter la « machinerie » de la méthode
du cercle dont le présent travail donne un exposé adélique. On obtient
ainsi la formule asymptotique de la Proposition 4.1 (Birch lemme 5.5,

Davenport « 16 variables » lemme 16, etc.).

Encore doit-on s'assurer que le terme principal de cette formule asymptotique

n'est pas nul. C'est la raison des hypothèses (H3) et (H4). Hélas
la vérification de (H3) est un problème difficile et tout simplement non résolu
dès qu'on quitte les cas particuliers.

En résumé, pour obtenir des exemples d'application, il faut atteindre deux

objectifs :

1° Trouver une propriété T du système / qui implique (Hl) et

aussi (H2).

2° Vérifier (H3) et éventuellement (H4).

B) Sur le travail de Birch

Ce dernier consacre son paragraphe 3 à la définition d'une propriété T
en termes de géométrie algébrique.

Soit l'application polynomiale / : C" -> C (on prend ici le corps C

parce qu'il est algébriquement clos). Birch note

A

la variété des points singuliers de / (rappel : r ^ n).

Il obtient ainsi la propriété T suivante :

n — dim V* > 2d~1 r(d— 1)Q
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