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46 R. DANSET

Cette derniere inégalité est une conséquence de la convergence de I'in-
tégrale

J o),

s

Enfin nous pouvons appliquer a I'inégalité (3.16) les quatre majorations
obtenues ci-dessus. Il vient

lj F*E) W (<& —v>)dE| « Prries,
A= M(A)

En posant 8; = €A on acheve cette démonstration. ]

§ 4. SERIE SINGULIERE ET INTEGRALE SINGULIERE

Une conséquence évidente du Théoréme 3 est que la transformée de Gauss
globale F* est intégrable sur A’. Ainsi sa transformée de Fourier, notée F*,
existe. Nous pouvons donc obtenir, grace aux Théoréemes 1, 2 et 3, le résultat
asymptotique suivant qui est essentiel dans ce travail.

ProPOSITION 4.1. Sous les hypotheses (HI1) et (H2) et en utilisant les
notations introduites dans les précédents paragraphes, il vient :

Pour toute boite HBe, pour tout PePHB), pour tout vel,
il existe 0 > 0 tel que

4.1) Y o) = F—v) + opP" i)
xeZn
Sf(x)=v

et le membre de gauche de cette égalité est égal au nombre de x e P# n 1"
et tels que f(x) = v.

Démonstration. On a déja expliqué, dans l'introduction de ce travail,
I’égalité essentielle

j HE) Y (<& —v>)dE = ) 0,(x).
(A/Q)

xeZn

f(x)=v
Compte tenu du sens donné au paragraphe 2 aux ensembles & et
P(A), le membre de droite de cette derniére égalité est exactement le nombre
de solutions entieres du systeme f(x) = v, situées dans la boite PZ.

b
i
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Enfin, pour A suffisamment petit et pour %€ &, on peut appliquer
simultanément les Théorémes 1, 2 et 3. En posant & = inf(3,, 3,, 83), on
obtient la formule asymptotique (4.1). ]

Il faut désormais étudier la fonction F* pour montrer qu’elle constitue
bien la partie principale de la formule asymptotique (4.1). Pour cela, les
hypothéses (H3) et (H4) seront utilisées.

Nous avons 'egalité

42 ) = FR (=W [IFR(=w):

le produit infini portant sur les places finies s’appelle classiquement « Série
singuliere », les lemmes 4.2, 3 et 4 lui sont consacres.

La quantité F ¥ (—v) s’appelle « Intégrale singuliere » et concerne la place
infinie. Son traitement est I'une des difficultés du travail de Birch et donc
aussi du présent travail; il occupe les lemmes 4.5 et 6.

Rappelons que, dans tout ce travail, on prend r < n et considérons
une application g: Z" — Z’, polynomiale a coefficients entiers.

Notons Dg(x), la matrice jacobienne de lapplication g en x e Z".

Disons pour simplifier que Dg(x) est d’ordre [ > 1 §’il existe un déter-
ninant extrait d’ordre r qui soit divisible par p'~! et non divisible par p'.

LEMME 4.2 (Hensel). Soit 1> 1 et x,€Z" tels que
1) g(xo) =0  (mod p*~1).
2) Dg(x,) est d’ordre .
tlors, pour tout entier p > 0, le systéme de congruences
21+

g(x) =0 (modp

dmet au moins p"~"™ solutions 'y, non congrues deux d deux (mod p'*")
i telles que Dg(y) soit d’ordre 1.

Démonstration. Procédons par récurrence sur lentier p; pour p = 0
- s’agit de ’hypothése.

Admettons le lemme vrai pour p et choisissons x e 7", tel que
:x) = 0 (mod p*~1*" et Dg(x) est d’ordre L

Alors en utilisant la formule de Taylor ou les % sont de «faux»

ienominateurs ! il vient

42) glx+u p'™) = g(x) + p'**Dg(x) (u)  (mod p2*2w).
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Avec a € Z', on peut écrire

(4.3) g(x) = ap* 1tm,

Compte tenu des congruences (4.2) et (4.3), nous aurons la congruence
(4.4) gx+up'™™ =0 (mod p* ¥
si et seulement si
ap it 4+ p'TH Dg(x) (w) =0 (mod p*'TH),
cest-a-dire

(4.5) ap'™!' + Dg(x)(u) =0 (mod p)

Mais la congruence (4.5) est un systéme linéaire en u = (uy, .., u,) a
coefficients dans Panneau Z/p' Z. La méthode usuelle de résolution d’un
systeme lin€aire est valable tant qu’il ne s’agit pas de diviser. Puisque
Dg(x) est d’ordre I, il existe un déterminant extrait d’ordre r égal a bp' ™1,
avec b # 0 (mod p). Notons ce déterminant det[a,, .., o], les a; désignant ses
colonnes.

A partir de ce déterminant, on définit classiquement des équations et
inconnues principales et on se ramene a la résolution usuelle du systéme
restreint (les n—r inconnues non principales étant devenues des parameétres)
et aux formules classiques de Cramer:

Pour chaque ie[1,n], on a

u; det [ay, .., o] = det [o;, .., —ap' "', ., o] (mod p'

qui devient

-1

u,bp p'"tdet[o,,.., —a,.,o] (modph
et enfin
u; b = det[ay,.., —a,.,0] (modp).
Il en résulte le calcul de u; (mod p) puisque b est inversible (mod p).
Comme il y avait (n—r) inconnues non principales, on obtient p”~" solutions

u = (uy, .., u,) distinctes (mod p); €crivons les solutions ainsi obtenues de la
congruence (4.4.)

y=x+up'’¥

N
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+
ces derniéres sont non congruentes deux a deux (mod p'trtl) et elles le sont
1+
encore moins si elles proviennent de deux x non congrus (mod p'™Y);

d’aprés Phypothése de récurrence, il y en a donc

pn-—r pp(n—r)' — ~p(p+ 1)(n—r) )

Enfin, on a y = x (mod p'**) et donc aussi (mod p'~1) et (mod ph,

ce qui entraine que Dg(y) est aussi d’ordre ‘
La demonstratmn par récurrence est donc complete / O

COROLLAIRE. Soit zeZ% une solution non singuliére du systeme
gx) = 0, alors il existe 1> 1, tel que pour tout entier pn =0, le
systéme de congruences g(x) = 0 (mod p* 1Y) admette au moins p Ik
solutions dans (Z/p* ' T*Z)". ' ‘

Démonstration. Puisque z est non singulier, il existe un déterminant

extrait de Dg(z)r d’ordre r et non nul.
Comme zeZ) et que les coefficients de g sont entiers, 11 existe

I>1letbeZy; = ,\{umtes p-adiques}, tels que Dg(z) = p L.
En réduisant modulo Z 2~ et puisque

Z,/p*'Z,) ~ (Z/p*'Z),

on trouve un élément x, € Z" tel que g(xo) = 0 (mod p*~1) et Dg(x,) est
dordre 1. 1l suffit alors d’appliquer le lemme 4.2 pour achever la démons-
‘ration de ce corollaire. - : O |

LeMME 4.3. Avec les notations précédentes, on a, pour tout veZ'.

Nombre de solutions de f (x) =v (mod )
k(n—r)

'4.6) ﬁ(—v) = lim
g k= 14
A
Démonstration. Puisque F* existe et est décomposable, la fonction locale
'* existe a fortiori et on a

>

2\
F3(=v)

Qr ‘l’p(<gp9 _’V>) [jQ" (pp(xp) wp(<&p9 f(vxp)l>)dxp‘] d&p
47) ' o - B

-

k— oo

= lim jla » . [jz ‘I’p(<E.vp’ fxp)— V>)dxp] dEa

S B
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Mais, pour |, |, < p*, nous avons obtenu, au lemme 1.1, ’égalité

p

J\Z" \l]p(<§p: f(xp)’—'v>)dxp = p_kn Z \ljp(<§p,f(u)—v>).

ue(Z/p* Z)»

Comme l'ensemble {§,€Q%| |§,], < p*} est un sous-groupe de QF,
dont T'application &, — ,(<&,, f(u)—v>) est un caractére, 'intégrale de ce
caractere sur ce sous-groupe est nulle si le caractére n’y est pas trivial
et vaut la mesure du sous-groupe: p*, si le caractére y est trivial. Or cette
trivialite est equivalente 4 la condition

(fw)—v)ep*Z,
ou encore:
u est solution du systéme de congruences f(u) = v (mod pY).

Tout ceci montre bien que 'égalité (4.7) n’est autre que I'égalité (4.6). [
Nous pouvons maintenant préciser la situation sur les places finies.

LEMME 4.4. Sous les hypotheéses (HI1), (H2) et (H3), pour tout veZ’,
on a

73—y > 0.

Remarque. Ce produit infini est indépendant de la variable P puisque
celle-ci n’affecte que la place infinie.

Démonstration. Puisque la fonction ﬁexiste et est décomposable, I’égalité
(4.2) montre que le produit infini €tudi¢ ici est convergent; il sera donc
non nul (c’est-a-dire > 0) si et seulement si tous ses facteurs sont non nuls.

Posant g = f — v, Phypothese (H3) donnant une solution non singuliere
dans tout Z7 au systeme g(x) = 0, nous pouvons appliquer le corollaire
du lemme 4.2:

Il existe [ > 1 tel que le systeme de congruences
(4.8) f(x)=v (modp?* 1*H
admette, pour tout entier p > 0, au moins p™~"* solutions. Donc, en notant
N ,(2I—14p) le nombre de solutions du systéme (4.8), il vient
N,Q2l—1+w) = p"=*,

N,@l—1+p) _ 1
p(21—1+p.) (n—r) p(Zl—l)(n—r)
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‘Enfin, quand j -+ 00, le membre de gauche de cette- derniére 1nega11te
admet une limite donnée par le lemme 4 3, on en déduit '

AN 1
"F;}‘(—v) = p(Zl—l) (n—r) >0

ce qui achéve cette démonstration. | ) O]

1l faut maintenant étudier l'intégrale singuliére F ¥ (—v). Afin que 'expose
soit complet, nous démontrons d’abord un lemme technique.
Notons, pour tout p € R": ' |

V(p) = {xeR"| f(x) = u}.

Remarque. V(u) peut étre vide.

LEMME 4.5. Soit X, un point non singulier de V(0), alors les trois
propositions suivantes sont vraies:

i) Il existe un voisinage ouvert U de x, et il existe o >0 tels
que

VwWnU+#Q<={lpnl<a}.

ii) Pour tout p, tel que |l <o, il existe une mesure positive dw,
sur V(W) nU ‘telle que, pour toute fonction o, continue et @ support
compact inclus dans U, on ait I'égalité '

49) . . J Q(x) dxy ... dx, = J [j edw,] du
. R" lul<a J V(AU -

#t, de plus, la fonction ut—»j, @dw, est continue sur [louvert
\ V(pnU |

el <ol
iii) Il existe une fonction @, continue et d support compact inclus dans
U, avec 0< ¢ <1 et telle quil existe B > 0 -et, pour tout .p, - avec

, o
< 7> linégalité

410 | J Cedw, =B o
V(RnU _ P T L mE ey T

Remarque. U peut étre aUSSIpetlt qu’on le veut. .
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Démonstration. Rappelons que r < n et considérons x,, un point non
singulier de 'ensemble V(0) = {x e R"| f(x) = 0}.
Supposons, quitte a réindexer les coordonnées x; de x, que

D(fy, - )

(4.11) D(xy, .., x,)

£0

(il s’agit, selon une notation usuelle, du déterminant extrait principal d’ordre r

-~

. . 0J; .
de la matrice jacobienne <—f—1> au point x).
X

Considérons I'application h de R" dans R" définie par
A(X 1 5 s Xpy Xy q s oeer Xp)
= (yl :fl(x)> ) yr:f;‘(x)> Vrds1=Xp515 00 yn:Xn) 5

la matrice jacobienne de 'application h au point x, est

M | 0
A =
N | I,

. ) L, of.
ou [I,_, est la matrice identit¢ d’ordre (n—r) et M = (afj>1 I
X <isr
Vo1gjsr
puisque
D(fi, - /o
DetAzDethﬁL_i#O’
D(xq, .., X,)

le point x4 est un point non singulier de 'application .

Par le théoréme des fonctions implicites, il existe un voisinage ouvert U
de x, dans R" et un voisinage ouvert W de h(x,) dans R" tels que
I'application
(4.12) UL w
soit un isomorphisme analytique.

On peut réduire W a un hypercube de centre h(x,), ainsi il existe
a > 0 tel que

W= {teR'|(I<i<r) |t <o et (F+1<j<n)|t; — xo;] < o}
Soit alors p € R” et soit aussi

14

p

W n (ul LR Hr) x R""

= {teR"|(I<i<r)t; = et (@+IKj<n)|t; — xo,;] < a}.

|
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On a clairement
(W, # Q= {lpl <of
et par la bijection (4.12) on obtient

W, # Q= {VwnU# Q};

la proposition i) est donc démontrée.

L’application h définit, par restriction, une carte locale
Vi AU 5> W,

si et seulement si |p| < o; on peut alors utiliser A~' pour définir sur
V() n U la mesure image de la mesure de Lebesgue sur W ; si J désigne
le jacobien, il s’agit de la mesure

dwu = I J(h_l) (“1 9 wery ur’ yr+1a o sy yn) | dyr+1 dy,,

définie, par exemple, pour les fonctions continues a support compact inclus
dans V(n) n U; rappelons enfin I'égalité

J(l’l_l) — D(fla"'a f;') o
D(x, ..., X,)

Soit maintenant une application ¢:R"” — R, continue et a support
compact inclus dans 'ouvert U; par la formule usuelle de changement de
variable (représente ici par I'isomorphisme analytique (4.12)) dans les inté-
grales multiples, on obtient le calcul suivant

Iad
J\ (p(x1>"'> xn)dxl dxn = (poh_l(yl’.__’ yn)IJ(h-l) (yla"'a yn)' dyl dyn
Rn J R

m rm

= [ o@ch ' [JhY)|dy, 1. dyldy, ... dy,
Jlul<a J W
r r

= [ edw,] du .
J lpl<e J V(U

L'égalite (4.9) est donc démontrée. De plus il est clair que la fonction

W J Pdw,
VimnU

est continue pour | p| < a. La proposition ii) est donc vraie.
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Choisissons maintenant une fonction ¢, continue a support compact
inclus dans U = h~ (W) et obéissant aux deux conditions suivantes:

0<o<1
et
o '({1}) o ki (W),

avec

o o
W= {teR(<i<lul <5 et (HISj<n)]y —xo 0 <5 )

Une telle fonction ¢ existe puisque U est diffeomorphe a W qui est un
hypercube de R"”, de méme que W’ dont la fermeture topologique est
incluse dans W.

o
Prenons alors pe R", avec | p| < —; on a donc
2

Wi=WnW,#Q

Y

et le calcul suivant

J odw, = @oh™ | J(h™) | dy, sy . dy,
VimnU J W
Z , I'](h_l)|dyr+1"‘ dyn>

J W

H

u

ou cette derniére inégalité résulte de la relation
©oh Y W) = {1}.
Continuons le calcul:

J NI [y, - dy,
w

K

= J o I J(h_l) (ulv weos s Vet 15 00 yn) | dyr+l dyn
lyj=x0,jlS7
rt1<j<n)

Or la fonction |J(h™1')| est continue, positive et non nulle sur W;
elle admet donc sur la fermeture de W’, qui est un compact inclus dans W,
une borne inférieure m > 0. i‘
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o
Ainsi il vient, pour tout p tel que | p| < 5:

a n—r
V(WU 2

ce qui achéve la démonstration de la proposition iii) de ce lemme, en prenant

]

Remarque. On peut montrer, mais c’est inutile pour démontrer le theo-
réme 4, que la mesure dw, est indépendante de la carte locale choisie sur
V(p) au voisinage du point non singulier x,. De plus les mesures ainsi
obtenues se recollent sur Pouvert 6, des points non singuliers de V/(p).

Enfin, pour toute fonction continue a support compact inclus dans u 6,
. i

(qui n’est autre que l'ouvert de R" constitué des points non singuliers de
f) on dispose de la formule

[ MR

(sur ce sujet voir aussi le paragraphe 5.F).
Le lemme technique (4.5) nous permet d’aborder la démonstration princi-
pale concernant I'intégrale singuliére.

LEMME 4.6. Sous les hypothéses (HI), (H2) et (H4), il existe une boite
BeS etil existe y >0 tels que, pour tout veZ', et pour tout P
supérieur d une valeur P(v) dépendant seulement de v, on ait linégalité

J/V},O(—v) >y prord,

Démonstration. La fonction F¥ existe puisque F* e L,(R"). Il en résulte
le calcul suivant ou I'on pose x = Pt puis u = & P

AN
Fol=v) = Lr U n(Poo(X)\boo(<ioo,f(X)>)dX]\l!oo(<§oo, —Vv>)dg,,

= P" Jvkr |:Jkn (poo(Pt)\poo(<E.‘oo Pd’ f(t)>)dt:| \lloo(<§oo g —V>)d§oo

= P"_”’j [j P (PO (<, f(t)——vP_d>)dti|du.
R L Re
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Il faut donc étudier la fonction 7 (P, v) définie par I’égalité
T2 (=) = PP v);
on ne peut lui appliquer le théoréme de Fubini car la fonction
u— Y(<u, f(t)—vP~?>) n’est généralement pas intégrable!

Aussi utilise-t-on une suite de fonctions positives a support compact:
(9n),., Qui, au sens des distributions, tend faiblement vers 9, la distribution
de Dirac en 0. On sait que l'action de ces distributions porte sur les
fonctions continues a support compact.

On sait aussi que la suite (gA,,)nEN tend faiblement, toujours au sens des
distributions, vers 1.

Ainsi il vient I'égalité

J(P,v) = lim (P, V)

n—oo

avece

T WP, V) = J [J Qo (POV (< u, f(t)—vP"d>)dt:| gu(w)du .

Nous pouvons cette fois appliquer le Théoreme de Fubini, il suffit
que ¢, soit intégrable ce qui s’obtient sans peine en prenant g, de classe
C® par exemple. On a donc

T (P, V) = J [ j GV (<u, f(t)—vP“">)duj| o (POt .

La formule d’inversion de Fourier est valable pour la fonction g,, il
en résulte I'égalite

(4.13) T (P, v) = J @ o(Pt)g (VP4 — f(t))dt .

Un premier avantage de I'égalité¢ (4.13) est que l'intégrale porte sur des
fonctions positives. Nous pouvons donc, en vue d’une minoration, utiliser
toute fonction ¢ telle que, pour tout t € R”, on ait la double inégalité

D’aprés ’hypothése (H4), le systtme f = 0 admet une solution x, non
singuliére dans R”. Choisissons une boite # e % telle que x, soit proche
(autant qu’on le voudra puisque & est dense dans 'ensemble des boites %
de R") du barycentre de %.
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Selon le lemme 4.5 i), il existe un voisinage ouvert U de x,, aussi
petit qu'on le veut et donc inclus dans la boite £, de méme barycentre
que 4 et de dimensions toutes moities de celles de #.

Puisque nous avons par définition @, = 0 * lpg, il est clair que la
fonction @ (Pt) prend la valeur 1 sur la boite %,. A4 fortiori, pour tout
te U et pour tout P, on a la relation

P,(Pt) = 1.

La fonction ¢ citée dans la proposition iii) du lemme 4.5 est donc
telle que pour tout t € R", on ait la double inégalite

0 < 0t) < @u(P1);

Pégalité (4.13) conduit alors a l'inégalite

T (P, V) = J o(t)g,(VP ™= f(1))dt .

Rn
En appliquant le lemme 4.5 ii), il existe « > 0 tel que

r e

T (P, V) = o()g (VP = f (t))dwp] dp
J |u|<e LJ V(mnU

> cpdwp} gu(VP ™I —pydp .

J lul<e LJ vimnu

Soit alors la valeur P(v) telle que, pour tout P > P(v), on ait I'inégalite
o
VP < =
2

nous n’utiliserons pour terminer cette démonstration que des valeurs de P
supérieures a la valeur P(v).

Puisque, selon le lemme 4.5 1ii), la fonction p — J‘ ¢@dw, est continue
VipnU

pour | pu| < o et qu'elle est clairement a support compact inclus dans cet
ouvert de R", on obtient, quand n — + o0, l'inégalité

7(P’V)>J. (.Pdva—d‘

V(VP~9)nU

Enfin, le lemme 4.5 1) dit que cette derniere intégrale est supérieure a
une constante f > 0 qui ne dépend ni de P > P(v), ni méme de v. Nous
2vons donc obtenu la minoration

et | F e
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F2(—v) > p P

valable pour tout ve Z" et tout P > P(v). J

Remarque. Le lemme 4.6, suffisant pour ce travail, dit que lintégrale
singuliére est, lorsque P — + 00, au moins d’ordre P"~". On a bien slr envie
d’obtenir, si possible, une partie principale précise et compte tenu de la
démonstration ci-dessus le plus vraisemblable serait ’équivalence suivante

(4.14) 17\00(—\/) ~ [ J ' dwo} prrd;
V(0)nB

il s’agit d’un résultat nettement plus difficile que le lemme 4.6 pour lequel
il faudrait commencer par donner un sens précis au coefficient de P"~ "
(@ ce sujet voir le paragraphe 5.F). Birch, dans son travail, démontre cette

equivalence en utilisant son hypothese de codimension élevée de la variété

des points singuliers de f. Cette hypothese de géométrie algébrique entraine
les hypotheses (H1) et (H2) et c’est tout son mérite. Mais je ne sais pas
si les seules hypotheses (H1), (H2) et (H4) suffisent pour obtenir I’équi-
valence (4.14).

Il ne reste plus qu’a conclure.

THEOREME 4. Sous les hypothéses (H1), (H2), (H3) et (H4) et avec les
notations précédentes, il existe une boite H e telle que, pour tout
ve Z’ et pour tout P > P(v) on ait l'inégalité

1/7>(~v) > prord

Démonstration. Utiliser les lemmes 4.4 et 4.6. ]

THEOREME PRINCIPAL. Soit [ = (fy, .., f,), r formes de degré d en n
variables, a coefficients entiers et répondant aux hypotheéses (HI1), (H2),
(H3) pour un élément v de Z' et (H4).

Alors le systeme [ = v admet une infinité de solutions entiéres.

Démonstration. En raison du Théoreme 4, la formule asymptotique de la
Proposition 4.1 est effective lorsque P — 4+ o0 avec Pe P(#) dou la
conclusion. ]

Remarque. Un corollaire évident du Théoréme Principal est que le
systtme homogene f = 0 admet au moins une solution non triviale, c’est-
a-dire qu'un systeme f obéissant aux hypotheses (H1) et (H2) observe le
Principe de Hasse fin.
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