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46 R. DANSET

Cette dernière inégalité est une conséquence de la convergence de

l'intégrale

Q&~Q + 2* d^f.
Ja}

Enfin nous pouvons appliquer à l'inégalité (3.16) les quatre majorations
obtenues ci-dessus. Il vient

| F*(Ç)\|/(<Ç, -v>)^| «
J Ar — M(A)

En posant 53 8À on achève cette démonstration.

§ 4. SÉRIE SINGULIÈRE ET INTÉGRALE SINGULIERE

Une conséquence évidente du Théorème 3 est que la transformée de Gauss

globale F* est intégrable sur Ar. Ainsi sa transformée de Fourier, notée F*,
existe. Nous pouvons donc obtenir, grâce aux Théorèmes 1, 2 et 3, le résultat

asymptotique suivant qui est essentiel dans ce travail.

Proposition 4.1. Sous les hypothèses (Hl) et (H2) et en utilisant les

notations introduites dans les précédents paragraphes, il vient :

Pour toute boîte & e SP, pour tout P e &{ß\ pour tout v g Zr,
il existe 8 > 0 tel que

(4.1) X <P.(x) ^(-v) + 0(P"-'d-*)
xeZn

/(*) v

et le membre de gauche de cette égalité est égal au nombre de x e P$ n ZM

et tels que f(x) v.

Démonstration. On a déjà expliqué, dans l'introduction de ce travail,
l'égalité essentielle

H(Ç)\|/(<Ç, -v>)dÇ I (PcoM.
(A/Q)r xeZn

f(x) v

Compte tenu du sens donné au paragraphe 2 aux ensembles Sf et

j, le membre de droite de cette dernière égalité est exactement le nombre
de solutions entières du système f(x) v, situées dans la boîte P@.
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Enfin, pour À suffisamment petit et pour & g «9*, on peut appliquer

simultanément les Théorèmes 1, 2 et 3. En posant 5 inf^, S2, ô3), on

obtient la formule asymptotique (4.1).

Il faut désormais étudier la fonction F* pour montrer qu'elle constitue

bien la partie principale de la formule asymptotique (4.1). Pour cela, les

hypothèses (H3) et (H4) seront utilisées.

Nous avons l'égalité

(4.2) =^(-v)n^(-v);
P

le produit infini portant sur les places finies s'appelle classiquement « Série

singulière », les lemmes 4.2, 3 et 4 lui sont consacrés.

La quantité — v) s'appelle « Intégrale singulière » et concerne la place
infinie. Son traitement est l'une des difficultés du travail de Birch et donc
aussi du présent travail; il occupe les lemmes 4.5 et 6.

Rappelons que, dans tout ce travail, on prend r ^ n et considérons

une application g : TT -> TJ, polynomiale à coefficients entiers.

Notons Dg(x), la matrice jacobienne de l'application g en x e Z".
Disons pour simplifier que Dg(x) est d'ordre l ^ 1 s'il existe un

déterminant extrait d'ordre r qui soit divisible par p1'1 et non divisible par pl.

Lemme 4.2 (Hensel). Soit 1^1 et x0 e Z" tels que

1) g(*o)0 (mod •

2) Dg(x0) est d'ordre l.

'lors, pour tout entier p ^ 0, le système de congruences

g(x) 0 (mod p2l~1 + li)

dmet au moins p{n~r^ solutions y, non congrues deux à deux (mod p/ + ^)

I telles que Dg(y) soit d'ordre L

Démonstration. Procédons par récurrence sur l'entier p; pour p 0

s'agit de l'hypothèse.
Admettons le lemme vrai pour p et choisissons x e Zn, tel que

x) 0 (mod p2l~1 + li) et Dg(x) est d'ordre L

Alors en utilisant la formule de Taylor où les — sont de « faux »kl
dénominateurs il vient

4.2) g(x+ u p1 +") g(x) + p' + »Dg(x) (u) (mod p21 + 2<1).
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Avec a e 71, on peut écrire

(4.3) g(x) ap2l~1 + ».

Compte tenu des congruences (4.2) et (4.3), nous aurons la congruence

(4.4) g{x 4- up1 +1^ 0 (mod p21 + ")

si et seulement si

ap2i-i + ix pi + » o (mod p2I + [I),

c!est-à-dire

(4.5) a pl~1 + Dg(x) (u) 0 (mod pz)

Mais la congruence (4.5) est un système linéaire en u (mx un) à

coefficients dans l'anneau Z/p1 Z. La méthode usuelle de résolution d'un
système linéaire est valable tant qu'il ne s'agit pas de diviser. Puisque
Dg(x) est d'ordre t, il existe un déterminant extrait d'ordre r égal à bp1'1,

avec b ^ 0 (mod p). Notons ce déterminant det[ax,..., ar], les oq désignant ses

colonnes.

A partir de ce déterminant, on définit classiquement des équations et

inconnues principales et on se ramène à la résolution usuelle du système
restreint (les n — r inconnues non principales étant devenues des paramètres)
et aux formules classiques de Cramer :

Pour chaque i e [1, ri], on a

ut det [al5..., ar] det [al9..., —apl~1,..., ar] (mod p1)

qui devient

utb p1'1 p1'1 det [al5..., —a,..., ar] (mod p1)

et enfin

ut b det [ax,..., —a,..., ar] (mod p).

Il en résulte le calcul de ut (mod p) puisque b est inversible (mod p).

Comme il y avait (n — r) inconnues non principales, on obtient p"~r solutions

u (ul,..., un) distinctes (mod p); écrivons les solutions ainsi obtenues de la

congruence (4.4.)

y x + u pl + ]l ;
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ces dernières sont non congruentes deux à deux (mod p'+M+1) et elles le sont

encore moins si elles proviennent de deux x non congrus (mod p'+^ ;

d'après l'hypothèse de récurrence, il y en a donc

pti-r p\i(n~r) _ p(ii+l)(n-r)

Enfin, on a yx (mod p'"1"")et donc aussi (mod p'"1) et (mod p1),

ce qui entraîne que Dg(y) est aussi d'ordre l.

La démonstration par récurrence est donc complète.

Corollaire. Soit z eZJ une solution non singulière du système

g(x) 0, alors il existe l > 1, tel que pour tout entier p ^ 0, le

système de congruences g(x) 0 (mod p21 1+admette au moins p(

solutions dans (Z/p21 1 + MZ)n.

Démonstration. Puisque z est non singulier, il existe un déterminant

extrait de Dg(z) d'ordre r et non nul.

Comme zeZnp et que les coefficients de g sont entiers, il existe

^ 1 et b e Zp {unités p-adiques}, tels que Dg(z) b pl~x.

En réduisant modulo Z 2l~x et puisque

(Zp/p2l~1Zp) — (Z/p2Z_1Z),

on trouve un élément x0 e Zn tel que g{x0) 0 (mod p21 *) et Dg{x0) est

d'ordre l. II suffit alors d'appliquer le lemme 4.2 pour achever la démonstration

de ce corollaire.

Lemme 4.3. Avec les notations précédentes, on a, pour tout v e ZI.

/\ Nombre de solutions de f(x) v (mod pk)
•'4.6) F*p(-v) lim

k->co P

Démonstration. Puisque existe et est décomposable, la fonction locale

7p existe a fortiori et on a

~V>)C^(-V) <Pp(Xp) vkp(<^p> f(Xp)>)dXp]

.4.7)

lim
k~* co J UpIP^p" J 4

<£>p> f(xp)—\>)dxp] dt,p.
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Mais, pour | ^p\p ^ pk, nous avons obtenu, au lemme 1.1, l'égalité

n
^p(<Z,P, f{xp)-v>)dxp p~kn£ vl;P(<^p. /(w)~v>) •

J Zp ue(Z/pkZ)n

Comme l'ensemble {£,peQrp\ |£p|p^pfc} est un sous-groupe de Qrp

dont l'application ^p i—> '\|fp(c^p, f(u) — v>) est un caractère, l'intégrale de ce

caractère sur ce sous-groupe est nulle si le caractère n'y est pas trivial
et vaut la mesure du sous-groupe: pk\ si le caractère y est trivial. Or cette

trivialité est équivalente à la condition

(/(«) -V) 8 p* Z'p

ou encore :

u est solution du système de congruences f(u) v (mod pk).

Tout ceci montre bien que l'égalité (4.7) n'est autre que l'égalité (4.6).

Nous pouvons maintenant préciser la situation sur les places finies.

Lemme 4.4. Sous les hypothèses (Hl (H2) et (H3J, pour tout v e 21,

on a

nfo-v) >o-
p

Remarque. Ce produit infini est indépendant de la variable P puisque
celle-ci n'affecte que la place infinie.

Démonstration. Puisque la fonction ^ existe et est décomposable, l'égalité
(4.2) montre que le produit infini étudié ici est convergent; il sera donc

non nul (c'est-à-dire > 0) si et seulement si tous ses facteurs sont non nuls.

Posant g f — v, l'hypothèse (H3) donnant une solution non singulière
dans tout Znp au système g(x) 0, nous pouvons appliquer le corollaire
du lemme 4.2 :

Il existe l ^ 1 tel que le système de congruences

(4.8) f(x) v (mod p2Z_1 + ^)

admette, pour tout entier p ^ 0, au moins p{n~r)v solutions. Donc, en notant

Np(2/-l + p) le nombre de solutions du système (4.8), il vient

Np(2l- 1 + p) ^ p(n~r)%

Np(2l-l+\i) ^
1

p{2l-ï+vi)(n-r) ^ p(2l- 1) (n-r) '
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Enfin, quand p -^ + oo, le membre de gauche de cette dernière inégalité

admet une limite donnée par le lemme 4.3, on en déduit

F*( — V) ^ ^(2i-l)(«-r)
> ^

ce qui achève cette démonstration.

Il faut maintenant étudier l'intégrale singulière^ (-v). Afin que l'exposé

soit complet, nous démontrons d'abord un lemme technique.

Notons, pour tout p e Rr :

F(p) {x e R" | f(x) p}.

Remarque. F(p) peut être vide.

Lemme 4.5. Soit x0 un point non singulier de L(0), alors les trois

propositions suivantes sont vraies :

i) Il existe un voisinage ouvert U de x0 et il existe a > 0 tels

que y

{F(p) n U # '0} o {| p | < a}

ii) Pour tout p, tel que | p | < a, il existe une mesure positive dwM

sur K(p) n U telle que, pour toute fonction <p, continue et à support

compact inclus dans U, on ait Végalité

4.9) cp(x) dxjL dxn [
J Rn J |n|<a J

cpdwJ dp
IH<« J V(n)nU '

et, de plus, la fonction p h-* <pdwM est continue sur l'ouvert
J V(»)nU

{I Hl < a}-

iii) Il existe une fonction (p, continue et à support compact inclus dans

U, avec 0 < (p < 1 et telle qu'il existe ß > 0 et, pour tout p, avec

a
jp|<—, l'inégalité

(4.10) cpdwM ^ ß .fJ V(\i)nU
:
'

• H
Ä'

Remarque. U peut être aussi petit qu'on le veut. *
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Démonstration. Rappelons que r ^ n et considérons x0, un point non
singulier de l'ensemble F(0) {x e R" | /(x) 0}.

Supposons, quitte à réindexer les coordonnées xf de x, que

(4.11)
aJ' «40
0(*. *,)

(il s'agit, selon une notation usuelle, du déterminant extrait principal d'ordre r

de la matrice jacobienne au point x0).
\dxj

Considérons l'application h de R" dans R" définie par

h(xlxr,xr +x„)

(y i= /iW, -,yr= L(x),yr+ 1=xr+1,...,yn x„);

la matrice jacobienne de l'application h au point x0 est

A
M 0

N K-r

Ôfj
où In_r est la matrice identité d'ordre (n — r) et M

V <7X- / 1 ^

puisque

Det X Det M — # 0
D(x1;xr)

le point x0 est un point non singulier de l'application h.

Par le théorème des fonctions implicites, il existe un voisinage ouvert U
de x0 dans R" et un voisinage ouvert W de h(x0) dans R" tels que
l'application

(4.12) U 4. W

soit un isomorphisme analytique.
On peut réduire W à un hypercube de centre h(x0), ainsi il existe

a > 0 tel que

W {te R" | (l^i^r) | tè | < a et (r + \ t} — x0j | < a}

Soit alors \x e Rr et soit aussi

K W n (Pi ' -> Ht) x

{t eR" \(l^i^r) tim- et (r+1 | tj x0J | < a}.
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On a clairement

± <Z)}o{lnl < a}

et par la bijection (4.12) on obtient

{W^ / 0}<*{K(p)n U / 0};
la proposition i) est donc démontrée.

L'application h définit, par restriction, une carte locale

L(p)

si et seulement si |p| < oc; on peut alors utiliser h'1 pour définir sur

V([i) n U la mesure image de la mesure de Lebesgue sur W^; si J désigne

le jacobien, il s'agit de la mesure

définie, par exemple, pour les fonctions continues à support compact inclus
dans V(\i) n U ; rappelons enfin l'égalité

Ah'1)
D{x1,..., xr)

Soit maintenant une application cp : Rn - R, continue et à support
compact inclus dans l'ouvert U ; par la formule usuelle de changement de

variable (représenté ici par l'isomorphisme analytique (4.12)) dans les

intégrales multiples, on obtient le calcul suivant

cp(Xj, ...dxn cp o h '(jq ,y„) | J(hx)(jq,yn) \ dy„

[
IH<<* J

[
ImI<« J

(p ° h 1
| J(h1)\dyr+1... dyr

cprfwj
V(n)nU

L'égalité (4.9) est donc démontrée. De plus il est clair que la fonction

cpdw
V(\i)nU

est continue pour | p | < a. La proposition ii) est donc vraie.
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Choisissons maintenant une fonction cp, continue à support compact
inclus dans U h~1(W) et obéissant aux deux conditions suivantes:

et

avec

0 < cp ^ 1

W {t e R" I (K i< r) I t, I <~et (r+ 1 </<n) | tj | < |}
Une telle fonction cp existe puisque U est difîéomorphe à W qui est un

hypercube de R", de même que W' dont la fermeture topologique est

incluse dans W.

oc

Prenons alors p e Rr, avec | p | < — ; on a donc

W' Wf nW.Ï 0
et le calcul suivant

cpùw^
V(\i)nU

cp o h l\J(h x) | dyr + 1 dyn

J(h *) I dyr+1 dyn,

où cette dernière inégalité résulte de la relation

cpo h~\W') {1}.

Continuons le calcul :

| Jih'1) | dyr+1 dyn

a
I J(h x) (pi -, Pr> yr+1, -, yn) I dyr+i - dyn

(r + 1 < j < n)

Or la fonction \J{h~1)\ est continue, positive et non nulle sur W;

elle admet donc sur la fermeture de W', qui est un compact inclus dans W,

une borne inférieure m > 0.
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Ainsi il vient, pour tout p tel que | p | <

cpdw^ ^ m -
V(n)nU

ce qui achève la démonstration de la proposition iii) de ce lemme, en prenant

ß rn[ - > 0.

Remarque. On peut montrer, mais c'est inutile pour démontrer le théorème

4, que la mesure dwM est indépendante de la carte locale choisie sur
L(p) au voisinage du point non singulier x0. De plus les mesures ainsi
obtenues se recollent sur l'ouvert 0^ des points non singuliers de L(p).
Enfin, pour toute fonction continue à support compact inclus dans u 0M

M

(qui n'est autre que l'ouvert de R" constitué des points non singuliers de

f) on dispose de la formule

dp

(sur ce sujet voir aussi le paragraphe 5.F).
Le lemme technique (4.5) nous permet d'aborder la démonstration principale

concernant l'intégrale singulière.

-e a-X II (pdw
J R" J R" J

Lemme 4.6. Sous les hypothèses (Hl), (H2) et (H4), il existe une boîte
$ g y et il existe y > 0 tels que, pour tout v e Zr, et pour tout P
supérieur à une valeur P(v) dépendant seulement de v, on ait l'inégalité

^(-v) > Y

Démonstration. La fonction ^ existe puisque F* R"). Il en résulte
le calcul suivant où l'on pose x — Pt puis u £O0Pd.

f^(-v) — V>)d^Q

P"
1

Rr

pn ~ rd

(pœ(Ft)^c0(<^00 f(t)>)dt v|;00(<ÇCO, -v>)d%a

<Pco(^t)vl/0o(<M, f(t)~vP d>)dt du
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Il faut donc étudier la fonction 0~(P, v) définie par l'égalité

'ft(-v) P"-riT{P, v) ;

on ne peut lui appliquer le théorème de Fubini car la fonction
u i— \|/(<u, f(t) — vP~d>) n'est généralement pas intégrable!

Aussi utilise-t-on une suite de fonctions positives à support compact:
(gn)neN qui, au sens des distributions, tend faiblement vers 80, la distribution
de Dirac en 0. On sait que l'action de ces distributions porte sur les

fonctions continues à support compact.
On sait aussi que la suite (g„)neN tend faiblement, toujours au sens des

distributions, vers 1.

Ainsi il vient l'égalité

0~(P, v) lim &~„(P, v)

avec

&n(P, V) <pJJ}tMoo(<u,f(t)-vP d>)dt g„(u)du.

Nous pouvons cette fois appliquer le Théorème de Fubini, il suffit

que gn soit intégrable ce qui s'obtient sans peine en prenant gn de classe

C00 par exemple. On a donc

fH(P, v) < u, fit) -vP "> cpœ (Pt)dt.

La formule d'inversion de Fourier est valable pour, la fonction gn, il
en résulte l'égalité

(4.13) rjp, v) <Pco (Pt)g„(vP d-f(t))dt.

Un premier avantage de l'égalité (4.13) est que l'intégrale porte sur des

fonctions positives. Nous pouvons donc, en vue d'une minoration, utiliser

toute fonction <p telle que, ptfur tout t e R", on ait la double inégalité

0 ^ Cp(0 ^ CPoo(^0 •

D'après l'hypothèse (H4), le système / 0 admet une solution x0 non
singulière dans R". Choisissons une boîte telle que x0 soit proche

(autant qu'on le voudra puisque 9* est dense dans l'ensemble des boîtes 01

de R") du barycentre de
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Selon le lemme 4.5 i), il existe un voisinage ouvert U de x0, aussi

petit qu'on le veut et donc inclus dans la boîte ^ de même barycentre

que 8 et de dimensions toutes moitiés de celles de 8.
Puisque nous avons par définition (pœ 0* lP@, il est clair que la

fonction cpJPt) prend la valeur 1 sur la boîte ^. A fortiori, pour tout

t e U et pour tout P, on a la relation

(Pce(Pt) 1
•

La fonction cp citée dans la proposition iii) du lemme 4.5 est donc

telle que pour tout t e R", on ait la double inégalité

0 ^ cp(t) ^ (Poo(Pt) ;

l'égalité (4.13) conduit alors à l'inégalité

STn{P, v) ^ (?(t)gJyP 'd - f(t))dt.

En appliquant le lemme 4.5 ii), il existe a > 0 tel que

Fn(P, V) ^
|n|<a

|M|<a

V(t)g„(vP
V(n)nU

dp

cpdw^
_J V(n)nU

gn(vP d-p)dp.

Soit alors la valeur P(v) telle que, pour tout P > P(v), on ait l'inégalité

vP~ <2;

nous n'utiliserons pour terminer cette démonstration que des valeurs de P

supérieures à la valeur P(v).

Puisque, selon le lemme 4.5 ii), la fonction p i- (pdw^ est continue
V(n)nU

pour | p | < a et qu'elle est clairement à support compact inclus dans cet

ouvert de Rr, on obtient, quand n -> + oo, l'inégalité

P(P, v) ^ (p dwvP-d.
V(vP ~ d)r\U

Enfin, le lemme 4.5 iii) dit que cette dernière intégrale est supérieure à

une constante ß > 0 qui ne dépend ni de P > P(v), ni même de v. Nous
ivons donc obtenu la minoration
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FZ (-y) > ßPn~rd

valable pour tout v e Zr et tout P > P(v).

Remarque. Le lemme 4.6, suffisant pour ce travail, dit que l'intégrale
singulière est, lorsque P + oo, au moins d'ordre pn~rd. On a bien sûr envie

d'obtenir, si possible, une partie principale précise et compte tenu de la
démonstration ci-dessus le plus vraisemblable serait l'équivalence suivante

il s'agit d'un résultat nettement plus difficile que le lemme 4.6 pour lequel
il faudrait commencer par donner un sens précis au coefficient de pn~rd

(à ce sujet voir le paragraphe 5.F). Birch, dans son travail, démontre cette

équivalence en utilisant son hypothèse de codimension élevée de la variété
des points singuliers de /. Cette hypothèse de géométrie algébrique entraîne
les hypothèses (Hl) et (H2) et c'est tout son mérite. Mais je ne sais pas
si les seules hypothèses (Hl), (H2) et (H4) suffisent pour obtenir
l'équivalence (4.14).

Il ne reste plus qu'à conclure.

Théorème 4. Sous les hypothèses (Hl (H2), (H3) et (H4) et avec les

notations précédentes, il existe une boîte telle que, pour tout

veZr et pour tout P > P(v) on ait Finégalité

U - V) »

Démonstration. Utiliser les lemmes 4.4 et 4.6.

Théorème Principal. Soit f (/i,fr\ r formes de degré d en n

variables, à coefficients entiers et répondant aux hypothèses (Hl), (H2),
(H3) pour un élément v de Zr et (H4).

Alors le système f v admet une infinité de solutions entières.

Démonstration. En raison du Théorème 4, la formule asymptotique de la

Proposition 4.1 est effective lorsque P -> + oo avec P e d'où la

conclusion.

Remarque. Un corollaire évident du Théorème Principal est que le

système homogène / 0 admet au moins une solution non triviale, c'est-

à-dire qu'un système f obéissant aux hypothèses (Hl) et (H2) observe le

Principe de Hasse fin.

(4.14) dw0 Pn~rd;
V(0)né%
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