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36 R. DANSET
§ 3. INTEGRATION DE LA TRANSFORMEE DE GAUSS GLOBALE

La principale difficult¢ de ce paragraphe concerne (encore!) la place
infinie ou nous cherchons une bonne majoration de Pexpression | F*(_) |
pour &, grand. Cest 'objet des lemmes 3.1 et surtout 3.2 qui reprennent
originale méthode de Birch (lemma 4.1, 4.2 and corollary, 5.2).

La suite et la fin de ce paragraphe adaptent la démonstration du
théoréme 2.8 de Lachaud.

LEMME 3.1. Soit 0 < u < d, alors, sous Phypothése (H1), pour tout
(d+u) 1
axeR" telque |a| < P~ 2 etpour P > 2u, on a linégalité

(3.1) | S(o) | « P"*[Max(1, PYa))]" .
Démonstration. Considérons un élément o de R" qui soit dans le cas ii)

a a
de ’hypothése (H1) pour deux éléments distincts Let—2de Q.
4. 42

Autrement dit, pour ke {1,2} et ie {1, .., r} on a les relations habituelles

Ogaki<qk>

ngd(akl s vees Ay s qk) = 1 H
1 < qk < P )

|Qk@_ak|<Pﬁd+A-

i a a .. e
Puisque L et -2 sont distincts, il existe i {1, ..., r} tel que

qi q>
1 <|qyay; — qqay|
< qrlqro—ag |+ qi1q, 0 — ayl
<2P—'d+2A

Un tel résultat est manifestement faux sous les conditions suivantes
1

d
(3.2) A < 2 et P > 2d-24,

—-d

Revenons a la démonstration de I'inégalité (3.1); pour |a| < P™¢ cette

inégalité est triviale puisque
| S(ox) | <« P"*¢

est touyjours vrai.

TS
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Supposons donc désormais que

1
Pé<|a] P2ty
Posons | o | = P~4*" il vient donc

d—u

0<h<
< 2

Ainsi o est-il dans le cas 1) de I'hypothése (H1) pour A = h, a = 0
et ¢ = 1; de plus, pour

1 1
P > 2u > 2d-2h

les conditions (3.2) sont remplies et o n’est dans le cas ii) de 'hypothese (H1)
a

pour aucun élément non nul — de Q".
q

Soit maintenant 0 < < h et A, = h — n, alors a n’est plus dans le
cas ii) de I’hypothese (H1) pour A;, a = 0 et g = 1 et pas davantage pour

a . . . . A ¢
tout autre — e Q" — {0} car cela contredirait ce qui vient d’étre dit. Donc o
est dans le cas i) de I’hypothése (H1) pour A;; on en déduit l'inégalité
|S(G)] & Pn—A19+s « Pn—hQ+nQ+a

En utilisant P?|a| = P" et puisque la constante impliquée par le
symbole « « » ne dépend pas de 1 > 0, on conclut que

| (o) | < P""5(Per) ™

ce qui acheéve la démonstration de ce lemme. O

La transformée de Gauss locale associée a la place infinie de Q est,
selon les notations adoptées des I'introduction de ce travail.

F3E0) = J Poolx) exp(—2im <&, , f(x)>) dx
avec

Oy = e*lP.%*

LEMME 3.2. Avec les notations précédentes et sous I'hypothése (H1), on a

| F5(8x) | < P[Max(1, PUE,))] ™97,
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Démonstration.

A) Définissons la fonction

E. (x) = exp(—2in<&,, f(x)>);

alors nous avons I’égalité suivante

(p*E. )(0) = J @(x) exp(—2in <&, f(—x)>) dx = FE((—1)%,).
er
En utilisant 'associativité du produit de convolution, il vient

[(0 % 1pg) * E¢_1(0) = [0 * (1p4 * E;_)]1(0)

ainsi, en changeant £ en (—1)?€_, on obtient

F3Ew) = J 0= x) - (Lpg * B 1y ) (x)dx .

Par commodité décidons que 0 est paire, il en résulte 'inégalité

(3.3) | F%Co) | « Max | (1pg * E—1ya ) (x) |

x € Supp 0

B) Faisons maintenant le calcul suivant

(Lpg * E(— )2 ) (x) = J 1pg(x—t) exp(—2in<(—1)%,,, f(t)>)dt

Rn

"

) pa—xexp(—2in<&,, f(u)>)du (avec u= —t)

S e(—2in<t., f0>) du

= z‘"j ( exp(—2in<€,z"% f(v)>)dv (avec v = zu)
zP \ B —

7)

(3.4) =z" LZK L(y) + JC — JDII

Dans cette derniere ligne de calcul 'expression présente sous les signes J

est, bien évidemment, celle figurant sous le signe Jde la ligne précédente. De

|
i plus, les notations utilisées ont les sens suivants:
i

N
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¥ X. _

b(y) est la boite unité de centre y,

, , .
C et D sont des domaines voisins des bords de la boite zP <93—-I;>,

. o
destinés & nous rappeler que les ensembles zP (.@‘—F> et U b(y) ne sont
' yeK

pas tout a fait égaux.

X -
C) L’ordre de grandeur du bord de la boite zP <93——I;> est (zP)"" 1,

on en déduit I'inégalité

(3.5) | j — J | < (zP)"_?.

Considérons la fonction g(y) = exp(—2in ’<Emz_", f»>), on a alors

a%%()’) L= —2in<&,z7 Y %(y)>g(y) (1<j<n)
et donc

(3.6) | | grad g0y) | < | & | 27%(P2) "

Dans linégalité (3.6) la facteur (Pz)'~' provient de la majoration de |

of

5——~(y) qui est homogéne de degré (d— 1) selon les coordonnées de y lequel
Vi

appartient a zP <.%’——%> + b(0), ensemble lui-mémé inclus dans la boule de

centre 0 et de rayon yzP ou y est une constante qui tient compte du
domaine borné de R" dans lequel se trouve la boite # et donc de celui

tout aussi borné dans lequel se trouve # — —I;,,pour tout P > 1 et tout x. -

appartenant au support compact de la fonction 6.
Une conséquence de 1’1nega11te (3.6) est la majoration suivante

(3.7) I(J ) — exp(—2in<E,z % f()>)| < &0 |27t P71,
b(y) | .

Posons maintenant

SEez™? = ZCXP( 2m<§m —d f(y)>) ‘ IELEI U |

yeK -
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Alors Iégalité (3.4) et les inégalités (3.5) et (3.7) entrainent I'inégalité
(3.8) [ Zz(1lpg * E -y )(x) — SCoz™ | <« Pyt + &y | 271 PTH(zPY

dans laquelle I'expression (zP)" correspond au cardinal de I'ensemble K.

D) La somme S(§.z”% est une somme S(o) pour oo = £_z"¢ avec zP
) n X . n
au lieu de P et la boite 4 — P au lieu de la boite 4.

Les conditions d’application du lemme 3.1 deviennent alors, avec
0<u<d,

1
(3.9) 2P > 2u

et

1
| € [ 277 < (P2)7297Y,

cette seconde inégalité étant équivalente a I'inégalité

2 d+u

(3.10) z>|E, |duPi-u,

Le parametre u sera précisé ultérieurement, mais désormais la variable z
satisfera aux inégalités (3.9) et (3.10). En appliquant le lemme 3.1, on
obtient

| S(Ew0z™) | « (zP)""*[Max(l, (zP)|E,|z"4)]™®
(3.11) « (zPy"**[Max(1, PYE, )] ~®

Dans le cas ou P?| £, | < 1, Iinégalité que ce lemme propose se réduit
a la trivialité suivante:

(3.12) | F*( )| « P".

Nous pouvons donc supposer désormais que P?| &, | > 1, alors les
relations (3.8) et (3.11) impliquent la majoration

| (Lpp * E(— 1y ) (¥) | < 28 P""S(PUELD ™ + 271 PP H (14 PIE )
< 2P P"T(PUEL) T + 2 PP P E |

(3.13)

E) Choisissons enfin

(3.14) z = PTUPUE D
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1l faut alors vérifier I'inégalité (3.10), d’ou le calcul suivant:
2 dtu
P HPYELN @ = | & |d-u Piu,

2

(Plgo' 7% = (PUELD T .

et puisque nous avons la relation P E, | > 1,1l vient

1+ Q2>

d—u’

qui donne

2

<d — ——;
4 1+ Q

puisque d > 2etQ > 0,on a

0<d— < d

14+ Q

et nous pouvons donc poser, au mieux,

2
1+Q°

(3.15) u=d

Il reste a vérifier I'inégalité (3.9), qui, compte tenu de I'égalite (3.14)
devient

(PUE )12 > 2%,

ouis, en tenant compte de I’égalité (3.15)

1
PUE,| > 2a0+D~-2,

1
Mais pour 1 < P*| & | < 241+9-2, l'inégalité proposée dans ce lemme

revient au résultat trivial (3.12) quitte a augmenter la constante impliquée
dans le symbole « « ».
Ainsi pouvons-nous considérer que 1’égalité (3.14) est justifice.

F) Avec les inégalités (3.3) et (3.13) ainsi que I’égalité (3.14), on obtient

| F(E) | < PTHPUEL T2 PP7e + P P(PYE ) 170
« Pn(PdlE‘,OOD-*Q+a(Q+ 1) )
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En posant € au lieu de €(€2+ 1), on obtient
| F¥ (£,) | <« P"[Max(1, PYE ] “"°.
La démonstration de ce lemme est donc terminée. O

Remarque. Le résultat du lemme 3.2 est utile pour | &, | trés grand;
donc z peut-étre tres grand. C’est la raison pour laquelle 'ensemble

zP(%’-—i> = zP# — zx
P

ne peut étre assimilé a I'ensemble zP# car, bien que x soit dans le support
de 6 dont on a suffisamment dit qu’il peut €tre aussi petit qu'on le désire
mais fixé, zx peut etre grand.

Dans la démonstration de Birch cet inconvénient n’apparait pas car Birch
utilise ¢, = lp,z ce qui revient a poser 6 = 9J,, distribution de Dirac
en 0, dont le support est {0} ce qui entraine zx = 0 pour tout z.

Mais le choix de Birch, pour la fonction ¢,, ne conduit pas a une
fonction de Schwarz-Bruhat et ruine le paragraphe 1 de ce travail qui utilise
une formule de Poisson.

Puisque nous avons choisi le support de 6 comme un voisinage compact

fixé de 0, il nous faut utiliser la boite % —% au lieu de la boite 4,

ce qui exige dans ’hypothése (H1) I'indépendance du résultat obtenu pour %
appartenant a un domaine borné¢ de R".

Birch signale cette indépendance dans la remarque qui suit la démons-
tration du corollaire de son lemme 4.3: « Note that this corollary does not
depend on the box % being contained in & »; mais il ne s’en sert jamais
puisque, tout au long de ses démonstrations, il utilise la méme boite %
quitte, le moment venu, a la choisir convenablement!

Par commodité nous noterons A = R x A,, ou A, est le produit
restreint des Q, ou Z, pour toutes les places finies de Q. On désigne
habituellement A, comme 'ensemble des adeles finis.

La mesure de Haar considérée sur A’ est @ df, et sera notée dt,,
p

ainsi a-t-on d = df,, ® dg,.

LEMME 3.3. Avec les notations précédentes, lintégrale f Q) *dE, est
Ar

!
convergente si et seulement si o > r + 1.
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Démonstration. Puisque la fonction Q&) = [] Max(L,§,| ,) ne dépend pas
P

de £, mais seulement de &, I'intégrale etudice apparait dans de nombreux
calculs et sa convergence est un souci légitime.
Tout d’abord il vient, pour tout entier k > 0,

_ . kr
j dé,,-—-]—_[f Q= P
Max(1, |Ep|p) < P¥ 1sisr J |&ip|pS<pP*

Dong, pour k > 1, on obtient

J dE_,p — pkr _ p(k—l)r )
|&plp = P¥

I en résulte le calcul suivant qui n’est possible que pour o > r

J,[Max(l,ﬁ;,,\,,)]—“d&p——- J e, + Y J sl
Zp k=1 Eplp =P

QP
0

— 1 + Z p—ka[pkr_p(k—l)r]

k=1
14+ (1—p) Y p
k=1
— 1+ (1-p P
I —p

Puisque nous avons '¢galité

J # Q(ﬁ)*a daf = HJ‘ . [Max(laiéphy)]_adép
A P Qp

S
! faut étudier la convergence du produit infini de terme général (14 u,), avec
e 1= D77

Up =P 1—p

qul est équivalente a la convergence de la série de terme général u, ~p - *°
i'ou la condition classique

?

oa—r>1

qui achéve la démonstration. []

Nous pouvons maintenant démontrer le théoréme auquel ce paragraphe 3
est consacré.
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THEOREME 3. Sous les hypothéses (H1) et (H2), pour tout A > 0, il existe
O3 > 0 tel que, pour tout veZ’, on ait

f ( F¥E) Y (<& —v>)dg = O(P""""%).
Ar—M(A)

Démonstration. Définissons les quatre intégrales suivantes

(‘

P = | PG
J e >pdta
»
Jf= r|F}<(£f)ld§fa
J Ay
Ko = | IF5(E)1dE,,
LAP) = | FF (&) | dEy
J o@)>prA

Nous avons I'inégalité

(3.16) |J F*E) W (<&, —v>)dE | < J | F*(€) | dg
A" —M(A)

A" —M(A)

<1, (P)J;, + K, L{(P).
Il nous reste a majorer les quatre intégrales définies ci-dessus.

1) En utilisant le lemme 3.2, il vient

I,(P) « J P& |PY) ™7 e dE,,
|& | P9> P2

& Pn—Qd-i-sd [ F—Q+e Fr—l dr
Jrzp-dta

n
< Pn—Qd—H:d F—Z dl—* « Pn—rd~A.
FZP_d+A

(Y

Ce calcul n’est autre que celui dit des « surfaces de niveaux » dans R”
et puisque | &, | = Max|§,,, |, les surfaces de niveaux sont ici des hyper-
i

cubes. De plus I’hypothése (H2), a savoir Q > r + 1, est utilisée pour
obtenir les deux dernieres inégalités. Enfin on aura choisi € < Q — r — 1.

i
|
S |
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2) Avec les notations du paragraphe 1 de ce travail, il vient
Fm»=gf&%qud@ﬂ%»mm=g@@.
p
Donc, en utilisant le lemme 1.2, on obtient
Jy< f QE) e dt,
As

et cette derniere intégrale est convergente selon le lemme 3.3, 'hypothese (H2)
etlechoixdee < Q —r — 1.

3) On a
| F%(8e) | dEos + J
K, = J | F5%(Ex) | 48 ;
[l S P-4 &l > P4
or
J | F2%(50) | dE <<f Prde. <« prri
8| S P4 IINES b

:t, en reprenant le calcul concernant I (P) mais avec A = 0, on obtient
j | F%(Ea) [dE < P"77,
€] >P—d
K, « pr—r

4) Comme pour l'intégrale J ,, nous avons la majoration

Ly(P) « J Q)" e dg, .

0()>pPA
. : 1
Choisissons cette fois € < 2 (Q—r—1), alors on a L
L(P) « P‘EAJ‘ QE) T dE, « P,
Q&) > P4
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Cette derniere inégalité est une conséquence de la convergence de I'in-
tégrale

J o),

s

Enfin nous pouvons appliquer a I'inégalité (3.16) les quatre majorations
obtenues ci-dessus. Il vient

lj F*E) W (<& —v>)dE| « Prries,
A= M(A)

En posant 8; = €A on acheve cette démonstration. ]

§ 4. SERIE SINGULIERE ET INTEGRALE SINGULIERE

Une conséquence évidente du Théoréme 3 est que la transformée de Gauss
globale F* est intégrable sur A’. Ainsi sa transformée de Fourier, notée F*,
existe. Nous pouvons donc obtenir, grace aux Théoréemes 1, 2 et 3, le résultat
asymptotique suivant qui est essentiel dans ce travail.

ProPOSITION 4.1. Sous les hypotheses (HI1) et (H2) et en utilisant les
notations introduites dans les précédents paragraphes, il vient :

Pour toute boite HBe, pour tout PePHB), pour tout vel,
il existe 0 > 0 tel que

4.1) Y o) = F—v) + opP" i)
xeZn
Sf(x)=v

et le membre de gauche de cette égalité est égal au nombre de x e P# n 1"
et tels que f(x) = v.

Démonstration. On a déja expliqué, dans l'introduction de ce travail,
I’égalité essentielle

j HE) Y (<& —v>)dE = ) 0,(x).
(A/Q)

xeZn

f(x)=v
Compte tenu du sens donné au paragraphe 2 aux ensembles & et
P(A), le membre de droite de cette derniére égalité est exactement le nombre
de solutions entieres du systeme f(x) = v, situées dans la boite PZ.

b
i




	§ 3. Intégration de la transformée de gauss globale

