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36 R. DANSET

§ 3. Intégration de la transformée de gauss globale

La principale difficulté de ce paragraphe concerne (encore!) la place
infinie où nous cherchons une bonne majoration de l'expression | i?*(^Q0) |

pour grand. C'est l'objet des lemmes 3.1 et surtout 3.2 qui reprennent
l'originale méthode de Birch (lemma 4.1, 4.2 and corollary, 5.2).

La suite et la fin de ce paragraphe adaptent la démonstration du
théorème 2.8 de Lachaud.

Lemme 3.1. Soit 0 < u < d, alors, sous l'hypothèse (Hl), pour tout
(d + u) y

a g Rr tel que | a | < P~ 2 et pour P > 2", on a l'inégalité

(3.1) I S{a) I « Pn+8[Max(l, Pd\oi\)Ta •

Démonstration. Considérons un élément a de Rr qui soit dans le cas ii)

a2
de l'hypothèse (Hl) pour deux éléments distincts — et — de Qr.

h h
Autrement dit, pour ke {1,2} et ie{1,} on a les relations habituelles

0 < aki < qk,

pgcd [akl,...,akr,qk)1

1 ^ qk^ P,

l&a - ak\<
^1 ^2 1 • • »1 (A

Puisque — et — sont distincts, il existe ie {1,..., r) tel que

1 < | q2 au-qx a2i\

< «2 I h-au|+ oc; -
< 2 p~d+2A

Un tel résultat est manifestement faux sous les conditions suivantes

d 1

(3.2)
2

Ct P>2d'2A'

Revenons à la démonstration de l'inégalité (3.1); pour | oc | ^ P~d cette

inégalité est triviale puisque

| S(a) | « Pn+Z

est toujours vrai.
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Supposons donc désormais que

P~d < | ex | < p-^d+u).

Posons | a | P~d+h, il vient donc

d — u
0

Ainsi a est-il dans le cas ii) de l'hypothèse (Hl) pour À h, a 0

et q 1 ; de plus, pour

1 i
P > 2« >

les conditions (3.2) sont remplies et a n'est dans le cas ii) de l'hypothèse (Hl)

pour aucun élément non nul — de Qr.
q

Soit maintenant 0 < p < h et Ax h — p, alors a n'est plus dans le

cas ii) de l'hypothèse (Hl) pour A1,<2 0etg let pas davantage pour

tout autre — g Qr — {0} car cela contredirait ce qui vient d'être dit. Donc a
Q

est dans le cas i) de l'hypothèse (Hl) pour Àx; on en déduit l'inégalité

| S(a) | « P"-A^ + e « pn-m+r\n+z

En utilisant Pd \ a | Ph et puisque la constante impliquée par le

symbole « « » ne dépend pas de r\ > 0, on conclut que

| S{a) | « Pn+\Pd\a\)-n

ce qui achève la démonstration de ce lemme.

La transformée de Gauss locale associée à la place infinie de Q est,
selon les notations adoptées dès l'introduction de ce travail.

FUU cpoo(x) exp(- 2in < ^, f{x) > dx
R"

avec

epoo 0 * 1F

Lemme 3.2. Avec les notations précédentes et sous l'hypothèse (HI), on a

m(ui « PTMax(i,pdiu)r"+£.
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Démonstration.

A) Définissons la fonction

E^Jx)exp(—

alors nous avons l'égalité suivante

(<p*£tco)(0) cp(x) exp( —2i7t<^a,, f( — x)>£*((-

En utilisant l'associativité du produit de convolution, il vient

[(9 * lpa) * £5J (0) [9 * (1M * £5J] (0)

ainsi, en changeant en (— l)'lc)Xi, on obtient

F*(U 9(-x) • (lPââ * £(_1)dçJ (x)dx

Par commodité décidons que 0 est paire, il en résulte l'inégalité

(3.3) |£*(UI« Max \
X G Supp 0

B) Faisons maintenant le calcul suivant

(lpB * F(- i)«*ç M — W*-1) exp( - 2 in<(- f(t) > dt

_ x exp(- 2m < /(m) >

exp(- 2m <,f{u)> du

(avec u —t)

i-i)
(.-})

exp( —2m<^00z d, f(v)>)dv (avec v zu)

I + —

_yeK J b{y) c D _

(3-4)

Dans cette dernière ligne de calcul l'expression présente sous les signes

est, bien évidemment, celle figurant sous le signe de la ligne précédente. De

plus, les notations utilisées ont les sens suivants :
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K ZnnzP\W-p),
b(y)est la boîte unité de centre y,

C et Dsont des domaines voisins des bords de la boîte — j,

destinés à nous rappeler que les ensembles zP(^--J et ne sont

pas tout à fait égaux.

C) L'ordre de grandeur du bord de la boîte — j est (zP)n

on en déduit l'inégalité

(3.5) « (zPf

Considérons la fonction g{y) exp( — 2m <t,xz /(y) > )- on a alors

à'/'" """"" '?>'i
|^(y) —2in<^a>z~d,y~~(y)> g(y)(!</<«)

et done

(3.6) I grad gr(y) | « | I z'APz)''-1

Dans l'inégalité (3.6) la facteur (Pzf~1 provient de la majoration de

(y) qui est homogène de degré (d—1) selon les coordonnées de y lequel3/
ôyj

appartient à zP^&—~ j -h 6(0), ensemble lui-même inclus dans la boule de

centre 0 et de rayon y zP où y est une constante qui tient compte du

domaine borné de R" dans lequel se trouve la boîte et donc de celui

x
tout aussi borné dans lequel se trouve & — — pour tout JP ^ 1 et tout x

appartenant au support compact de la fonction 0.

Une conséquence de l'inégalité (3.6) est la majoration suivante

(3-7) l^j* ^ - exp(—2m<i;coz~'i, f(y)>) I « I I z"1

Posons maintenant

S^z-") £ exp(-2m<£xz ^/(y)>).
yeK
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Alors l'égalité (3.4) et les inégalités (3.5) et (3.7) entraînent l'inégalité

(3.8) | z"(U * E,_1)dtJ (x) - S^z"") | « (zP)"-1 | ^ | z"1 P"~\zPy

dans laquelle l'expression (zP)n correspond au cardinal de l'ensemble K.

D) La somme S^z"**) est une somme S(a) pour a Çœz~d avec zP

x
au lieu de P et la boîte — — au lieu de la boîte

Les conditions d'application du lemme 3.1 deviennent alors, avec
0 < u < d,

(3.9) zP > 2"~

et

|^| z~d ^{Pz)~^d+U\

cette seconde inégalité étant équivalente à l'inégalité

(3.10)

Le paramètre u sera précisé ultérieurement, mais désormais la variable z

satisfera aux inégalités (3.9) et (3.10). En appliquant le lemme 3.1, on
obtient

| S(^z~d) I « (zP)"+'[Max(l,

(3.11) « (zP)"+'[Max(l, i^lU)]-"
Dans le cas où Pd|| < 1, l'inégalité que ce lemme propose se réduit

à la trivialité suivante :

(3.12) I/•*<;,)! «
Nous pouvons donc supposer désormais que | > 1, alors les

relations (3.8) et (3.11) impliquent la majoration

i(i £(_1)<tj(x) i « z*p"+\pd\urn+ z-1

« ze Pn+B(P%J"+

(3.13)

E) Choisissons enfin

(3.14) z p-\Pd\U)1+a-



MÉTHODE DU CERCLE ADELIQUE 41

Il faut alors vérifier l'inégalité (3.10), d'où le calcul suivant:

p'\p%j)l+n> iu i

(P%J)1+n* IU)^-
et puisque nous avons la relation | > 1, il vient

2
1 + Q ^ —

d — u

qui donne

2
u < d —

1 + O '

puisque d ^ 2 et Q > 0, on a

2
0 < d - — < d

1+0
et nous pouvons donc poser, au mieux,

(3.15) "

Il reste à vérifier l'inégalité (3.9), qui, compte tenu de l'égalité (3.14)

devient

(Pd\U)1+n>

puis, en tenant compte de l'égalité (3.15)

iPd|£«, | > 2<W +«)-2

1

Mais pour 1 < Pd | | ^ 2<*u+o)-2, l'inégalité proposée dans ce lemme

revient au résultat trivial (3.12) quitte à augmenter la constante impliquée
dans le symbole « « ».

Ainsi pouvons-nous considérer que l'égalité (3.14) est justifiée.

F) Avec les inégalités (3.3) et (3.13) ainsi que l'égalité (3.14), on obtient

I F*(U | « p-%Pd\Uf+eCi~n Pn+e + Pn~l U)1"1""
« .P"(-P''|f;00|)~n+E<n+1>.
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En posant s au lieu de s(D + 1), on obtient

m(UI« F"[Max(l, P«|u)rn+*

La démonstration de ce lemme est donc terminée.

Remarque. Le résultat du lemme 3.2 est utile pour | | très grand;
donc z peut-être très grand. C'est la raison pour laquelle l'ensemble

ne peut être assimilé à l'ensemble zP@ car, bien que x soit dans le support
de 9 dont on a suffisamment dit qu'il peut être aussi petit qu'on le désire

mais fixé, zx peut être grand.
Dans la démonstration de Birch cet inconvénient n'apparaît pas car Birch

utilise cpœ \Pm ce qui revient à poser 0 80, distribution de Dirac
en 0, dont le support est {0} ce qui entraîne zx 0 pour tout z.

Mais le choix de Birch, pour la fonction cp^, ne conduit pas à une
fonction de Schwarz-Bruhat et ruine le paragraphe 1 de ce travail qui utilise

une formule de Poisson.

Puisque nous avons choisi le support de 9 comme un voisinage compact
x

fixé de 0, il nous faut utiliser la boîte au lieu de la boîteJ p
ce qui exige dans l'hypothèse (Hl) l'indépendance du résultat obtenu pour
appartenant à un domaine borné de R".

Birch signale cette indépendance dans la remarque qui suit la démonstration

du corollaire de son lemme 4.3 : « Note that this corollary does not
depend on the box being contained in ê » ; mais il ne s'en sert jamais
puisque, tout au long de ses démonstrations, il utilise la même boîte &
quitte, le moment venu, à la choisir convenablement

Par commodité nous noterons A R x Af, où Af est le produit
restreint des Qp ou Zp pour toutes les places finies de Q. On désigne
habituellement Af comme l'ensemble des adèles finis.

La mesure de Haar considérée sur A} est ® d^p et sera notée d^f9
p

ainsi a-t-on dfi — dfi^ (g) d^f.

Lemme 3.3. Avec les notations précédentes, l'intégrale Q(£) a d^f est
J A/

convergente si et seulement si a > r -h 1.
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Démonstration. Puisque la fonction Q(Ç) n Max(l,|g p) ne dépend pas
P

de y mais seulement de y, l'intégrale étudiée apparaît dans de nombreux

calculs et sa convergence est un souci légitime.

Tout d'abord il vient, pour tout entier k ^ 0,

n
Max(l,|Çp|P)^pk l^i^r J \^ip\p^pk

,p_ 1L dq,P P"r

Donc, pour k > 1, on obtient

d^p pkr - p(fc-1)r.
|Çp|p ~ Pk

Il en résulte le calcul suivant qui n'est possible que pour oc > r

[Max(l,|yp)]-a^ - d%P+ I
„ —p w Up|p-Pk

00

i + z p~kfliiyr-p(*~1^

1 + (1-p-o Ik= 1

1 + (1

k{r — a)

1 - pr"a

Puisque nous avons l'égalité

_
o(c) - </cx n

Qrp
[Max(l,|gp)]-»^p

faut étudier la convergence du produit infini de terme général (1 + w avec

UP ~ P
1 - p~ry — a L

1 - pr~a '

qui est équivalente à la convergence de la série de terme général up ~ pr

| Toù la condition classique

a — r > 1

qui achève la démonstration.

Nous pouvons maintenant démontrer le théorème auquel ce paragraphe 3

est consacré.
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Théorème 3. Sous les hypothèses (Hl) et (H2), pour tout A > 0, il existe

83 > 0 tel que, pour tout v e II, on ait

F*(£)\|/(<Ç, — v > )dh) 0{Pn~rd~63)
Ar — M(A)

Démonstration. Définissons les quatre intégrales suivantes

IaoiP). f
j l^ool>/>_d + A

F*(Ul^oo,

MP) I |F?(MI^/-
Q(£,)>Pa

Nous avons l'inégalité

(3.16)
Ar - M (A) J Ar-M (A)

< /«(P) J> + Kœ Lf(P).

Il nous reste à majorer les quatre intégrales définies ci-dessus.

1) En utilisant le lemme 3.2, il vient

ijp) « raup*)-0*'
l^col

^ pn — Od + zd -1 - 0 + e r~r - 1P"1 dT
r^p-d+A

« P>n — Qd + zd T~2dT« P"
p>p-d + A

Ce calcul n'est autre que celui dit des « surfaces de niveaux » dans Rr

et puisque | £«> | Max | £ioo |, les surfaces de niveaux sont ici des hyper-
i

cubes. De plus l'hypothèse (H2), à savoir Q > r + 1, est utilisée pour
obtenir les deux dernières inégalités. Enfin on aura choisi s < Q — r — 1.
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2) Avec les notations du paragraphe 1 de ce travail, il vient

F*&f) n <pp(*„)= nMo)•

Donc, en utilisant le lemme 1.2, on obtient

Jf « m~a+tdsf

et cette dernière intégrale est convergente selon le lemme 3.3, l'hypothèse (H2)
et le choix de 8 < Q — r — 1.

3) On a

Kn FUU\d^+
IÇoolf-" Uool>P"

f F *JU | d$„ ;

n(u i <«u «
Pnd£>oa«

;t, en reprenant le calcul concernant IJP) mais avec A 0, on obtient

|400|>/>-rf
\Fl(U\d^

i ou

« P"

4) Comme pour l'intégrale Jf, nous avons la majoration

Lf(P)«
Q<i)>P&

Q(Un+cd^f.

Choisissons cette fois e < - (fi-r-1), alors on a

Lf(P) « P'
Qli) > PA

Q(Un+2£ d'^f « p~*.
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Cette dernière inégalité est une conséquence de la convergence de

l'intégrale

Q&~Q + 2* d^f.
Ja}

Enfin nous pouvons appliquer à l'inégalité (3.16) les quatre majorations
obtenues ci-dessus. Il vient

| F*(Ç)\|/(<Ç, -v>)^| «
J Ar — M(A)

En posant 53 8À on achève cette démonstration.

§ 4. SÉRIE SINGULIÈRE ET INTÉGRALE SINGULIERE

Une conséquence évidente du Théorème 3 est que la transformée de Gauss

globale F* est intégrable sur Ar. Ainsi sa transformée de Fourier, notée F*,
existe. Nous pouvons donc obtenir, grâce aux Théorèmes 1, 2 et 3, le résultat

asymptotique suivant qui est essentiel dans ce travail.

Proposition 4.1. Sous les hypothèses (Hl) et (H2) et en utilisant les

notations introduites dans les précédents paragraphes, il vient :

Pour toute boîte & e SP, pour tout P e &{ß\ pour tout v g Zr,
il existe 8 > 0 tel que

(4.1) X <P.(x) ^(-v) + 0(P"-'d-*)
xeZn

/(*) v

et le membre de gauche de cette égalité est égal au nombre de x e P$ n ZM

et tels que f(x) v.

Démonstration. On a déjà expliqué, dans l'introduction de ce travail,
l'égalité essentielle

H(Ç)\|/(<Ç, -v>)dÇ I (PcoM.
(A/Q)r xeZn

f(x) v

Compte tenu du sens donné au paragraphe 2 aux ensembles Sf et

j, le membre de droite de cette dernière égalité est exactement le nombre
de solutions entières du système f(x) v, situées dans la boîte P@.
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