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28 R. DANSET

§ 2. ARC MINEUR

On entend ici par « Arc Mineur », le complémentaire dans (A/Q)" de
I'arc majeur M(A). On désire majorer le module de la somme H(&) lorsque
¢ appartient 4 un tel arc mineur.

Pour cela, I'hypotheése (H1) est indispensable. On définira d’ailleurs un
ensemble T(A) = M(A), mieux adapté a 'hypothese (H1) et on obtiendra, au
lemme 2.2 une majoration de | H(E) | pour & appartenant au complémentaire
de T(A) dans (A/Q)'.

Nous aurons ainsi les moyens de démontrer le principal résultat de ce
paragraphe, c’est-a-dire le théoreme 2. Enfin 'application stricte de I’hypothese
(H1) qui concerne des sommes trigonométriques d’un type précis nous
contraint a des précautions qui sont ’'objet du lemme 1 et qui compliquent
légerement, mais sans aucune conséquence sur les principaux résultats de ce
travail, ’énoncé du théoréme 2. Ces précautions concernent le choix de la
boite # puis celui de la variable P.

LEMME 2.1. Il existe un sous-ensemble dense & de I'ensemble des boites %
de R" tel que, pour toute boite A de &, il existe un sous-ensemble non
borné¢ de R, noté P(#H) avec, pour tout P élément de P(AB) et
pour k égala O ou 1, [légalité suivante

(2.1) Z" ( (0%1p5) " W((k)) = Z" A 154 ({K)) .

Remarque. Une explication romanesque du lemme 2.1 et de sa démons-
tration serait la suivante.

L’adoucissement de la fonction 1,4 réalisé par le produit de convolution
B % 1,5, se produit au voisinage du bord de la boite P%. Si ce bord

est a distance > 3 du réseau Z" et si I'adoucissement est suffisamment

1 1

rapide (support de 6 [— 3’ + g], par exemple !) il ne concerne aucun

point de Z".

Démonstration du lemme 2.1. Une boite # de R" est un n-parallélépipede
de cotés paralléles aux axes, ou encore # = {x e R" /(1<i<n), a; < x; < b;}.

Considérant E = {(ay, by, .. a,,b)eR*" /(1<i<n), a; <b;}, sous-
ensemble ouvert de R?", en bijection naturelle avec ’ensemble des boites &
de R", on peut définir sur E une topologie évidente et donner un sens
non moins évident a 'expression: « & est dense dans E ».
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On peut aussi restreindre E par des conditions supplémentaires comme,
par exemple:

Max (b;—a) <1 ou Max(al|b]) <M.
Définissons alors I'ensemble ¥ = {Be E|(a,, by, .., a,, b,) est une famille
finie de nombres réels linéairement indépendants sur Q}.
Pour des raisons de dénombrabilité, & est dense dans E
Soit maintenant B € & ; le théoréeme de Kronecker (cf. Hardy and Wright,
“The theory of numbers”, Oxford Press, Théoréme 444) dit justement que,

pour tout € > 0, il existe un sous-ensemble non borné de R que nous
noterons 2 (%) et tel que, pour tout Pe P (%) et pour tout i€ {l,..,n},

on ait
P ! < t Pb . <
a. — — e L — —
i~ 3 e i 5 €

. 1 1 1"
En choisissant & = ¢ et le support de 6 inclus dans ,:— §,+ —] , on
se convaincra que
{(XeZ"| 0% 1pg(x) # lpg(x)} = @

ce qui constitue le résultat de ce lemme. ]
Définissons maintenant, pour A > 0, ’ensemble

T(A) = {EeA| &, 1QE) < P77 et Q) < P}

ou, mais il s’agit d’un rappel !
Q) = [[Max(1,]¢&,1,).
p

Puisque nous avons Q(§) > 1, I'inégalité

|8 | Q) < PTO74
‘ntralne 'inégalité
| | < P74

:t on obtient donc: T(A) = M(A). Ces ensembles T(A) sont bien adaptés a
‘hypothése (H1) comme le montre le lemme suivant.

LEMME 2.2. Avec les notations précédentes et sous Phypothése (H1),
pour tout & e A" tel que
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(2.2) n(€) ¢ (T(4)) ,

ou T est la projection canonique de A" sur (A/Q), on a, pour toute
boite %€, pour tout P e P(B) et pour tout & > 0, linégalité

(2.3) | HE) | « Pr=897e,

Démonstration. Dans une premiere partie, on réécrit la somme H(E)
sous la forme d’une somme trigonométrique S(o) pour un o convenable.
Dans une seconde partie on applique ’hypothese (H1) a cette somme S(x).

1" partie. Nous savons que, par définition, nous avons ’égalité

HE) = ), o) V(<& f(x)>).

xeQn .

Puisque, pour tout entier premier p, on a ¢, = 122 , la somme peut se

reduire aux x € Z".
Puisque 4 € & et P € P(A), I'égalité (2.1) nous permet d’écrire la relation

(2.4) HE) = ) Vo(<€u, f()>) [[V(<E,, f(x)>).

XEPBNLN

Suivant alors une remarque qui a déja servi dans la démonstration du
lemme 1.2, nous pouvons remplacer ¢, par la partie polaire de son déve-
loppement hensélien puisque f(x) € Z" et que le caractere \, est trivial sur Z',.

Cette partie polaire s’écrit

a Ap, 1 Ap, r . . §
== 4 avec les conditions qui la caractérisent
p

qE,)  \qE,)’ )
0<a,; <qE,) ((I<i<n),

pged(a,, 15 ap,,p) = 1,
q(&p) = Max (1> I E.vp,i |p) .

1<isr
On obtient alors I'égalité
, a
(2.5) HE) = ) explin<—&, + Y —F—, f(x)>).
XEPBNL" p Q(E_,p)

Comme il n’y a quun nombre fini d’entiers premiers p, tels que
q(&,) > 1 ou, ce qui est équivalent, a, # 0, la somme figurant dans 'exposant
ci-dessus a un sens.
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De plus, pour ce nombre fini d’entiers premiers p, on a q(§,) = p°
avec a > 1, donc le p.p.c.m. de différents g(§,) n’est autre que leur produit.
On obtient ainsi

y 9 a(g)

= 5l ¢ d r
&) o (CementdeQ)

avec

Q) =[] 4(&,)

et

pged(a,(€), .., a,(£), Q(E)) = 1 (on ne considére que les a,&) # 0)
0<a()<QO ((OA<isn).

Il vient donc

. a(&)
(2.6) HE) = Y explin< —E, + —, f(x)>).
xePBAL" Q(EJ)
L’¢galité (2.6) montre que la somme H(E) est une somme trigonométrique
a(§)
S@) pourg = 0etoa = —— — & .
Q(8)
2¢ partie. Soit A > 0, supposons que «, trouvé ci-dessus, soit dans le cas ii)
de I’hypothése (H1), c’est-a-dire qu’il existe g_ (a—l, ey &> ¢léement de Q"
q q q
tel que:
0<a <q (I1<i<r),
pgcd(ag,....,a,,q) = 1,
1 <q< P,
a; 1
lo, — | < -p~4*A (I<i<r).
q q

L’ultime condition est équivalente a I'inégalité

{2.7) —E_ @ _a < lP—d+A.

QC)  q] ¢

Considérons I’élément { de A" tel que { = & — @ -+ E.
Q@) ¢q
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a(g)

Puisque, pour tout entier premier p, on a (& — ——) e Z’,, on obtient
p

0(E)
0(0) = Q(f) ~q.
q

En conséquence, I'inégalité (2.7) devient

|8 1 Q) < P74

comme de plus
l<g=900Q <P
on constate que { € T(A). Enfin, puisque ({—&) € Q’, on obtient
HE) = HE) et n(g)en(T(A)).

Si, maintenant, nous imposons la condition m(€) ¢ n(T(A)), alors, par
contrapposée, o n’est pas dans le cas i) de ’hypothese (H1); il est donc
dans le cas i), d’ou I'inégalité

|H(é)| « Pn—AQ+a
qui acheéve cette démonstration. O

Nous avons encore besoin d’un majorant de la mesure de T(A) qui est
I'objet d’un dernier lemme.

LEMME 2.3. On a linégalité
(28) H(T(A)) < P—rd+(r+1)A.

Démonstration. Dans la démonstration du lemme 2.2, nous avons vu que,

a(g)

E e A" étant donné, on connait alors £, € R" et —— € Q’, ce dernier ne

Q(S)

dépendant que des &,, pour tout p entier premier.

Réciproquement le couple (Em , a_(él) définit & modulo [[ Z*,.
(&) »
Pour a_ (ﬂ, - fﬁ) e Q" et tel que
q q q

0<a <q(lgi<gr),

pgced (ay,.,a,,q) = 1.
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On définit

T, 8) = {EeAaf) =a et Q©F) =4
ot &, |06 <P .

Alors on obtient

1 - —rd+rA
(To dd) = Hal{x R [x] < P72 PITup(25) = a7 P

De plus, on vérifie facilement que pour (a, q) # (a;,4;) on a

TofB) N T,y 0,(8) = @

et on a aussi
T(A) = U v T, q(A).
1<g<pA @

De ces trois derniéres relations résulte le calcul suivant

H(T(A)) = Z Z q" prd+ar
1<g<pA 0<a;<gq
pgcd(@y, ....,ar,q)=1
< Z z q—r p-rdtra

1<g<PA 0<a;<gq

—rd+ @+ 1A .
g pratrt by

le lemme 2.3 est donc démontré. ]

Nous pouvons désormais démontrer le principal résultat de ce para-
graphe 2.

THEOREME 2. Avec les notations précédentes et sous les hypothéses (H1)
et (H2), pour toute boite %€, pour tout P e P(HB) sous-ensemble non
rd

borné de R, pour tout veZ’, pour tout A tel que 0 < A < PR
-

il existe &, > 0 tel que

HE) V(<& —v>)dg = O(P" " %).

J(A/Q)’ —n(M(4))

Démonstration. Puisque T(A) < M(A), il suffit de montrer que

f | HE) | dg = O(P"~r4~5%).
(A/Q) —n(T(A))
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Choisissons A tel que 0 < A < , puis définissons une suite

r+
A0=A<A1<...<A1\,=r’f1
obtenue en fixant 6 > 0 tel que
(2.9) Q—r—1>2A"1
et
(2.10) %6 > (r+1)(A,.;—4A) pour O0<t<N-1.

Une telle suite existe puisque, en vertu de I'’hypothése (H2) on a
Q—r—1>0,cet o est dautant plus petit que A est lui-méme petit. Puis,
o étant choisi en fonction de l'inégalité (2.9), on peut définir (A, —A)

a partir de I'inégalité (2.10) et obtenir enfin la valeur de N. Il est important

de remarquer que & et N sont indépendants de P.

La raison du choix de Ay = vient du calcul suivant et du lemme 2.2.

r+1

rd

J lH(‘E_.)ldé <<J‘ Pn-ANQ+s dE_, & Pn—anLa
(A/Q)y" —n(T(AN)) (A/Q)"
Mais l'inégalité (2.9) donne

>1+ 29
r+ 1 (r+ 1A

donc

d A
d Q+e<n—rd—22Y 4 ¢
r+ 1 A

<n—rd— 20+ ¢

n_

d’ou l'inégalite

(2.11) | H(E) | d& « Prrd=25+

J(A/Q)r —n(T(AN))

Par ailleurs, on calcule ce qui suit, pour chaque t tel que 0 <t < N—1,
et en utilisant les lemmes 2.2 et 2.3




S -
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J | H(E) | d€ « j prareqe
1(T(Ac+ 1)) = n(T(AL)) 1(T(Ae + 1))
« P—rd+(r+1)At+1+n—AtQ+s « Pn—rd+(r+l)(At+1—At)—At(Q""‘1)+8

Mais I'inégalité (2.10) aidant ainsi que l'inégalité (2.9) qui entraine

Q—r—1A, > (Q—-r—1DA > 25.

On obtient 'inégalité

(2.12) | H(E) | d8 < prri=gote

J‘T‘(T(Az + 1)) - N(T(At))

En réunissant l'inégalité (2.11) et les inégalités (2.12) dont le nombre N
ne dépend pas de P, il vient

3
J' |H(§) l di « Pn—rd—56+s
(A/Q)r —n(T(4))

0 , .
On peut enfin choisir € = 5 et 6, = & pour achever la démonstration du

théoreme 2. ]

Remarque. La démonstration du théoreme 2 est classique: voir, par
exemple, Birch lemme 4.4.

Remarque. Pour de grandes valeurs A, la restriction de la projection =«
a I'ensemble T(A) n’est pas injective.
Ceci ne presente aucun inconvénient pour la démonstration du théoréme 2,
puisque I'inégalité
W(T(4) > uln(T(A)]
est dans le bon sens.
Au contraire, au paragraphe 1, pour étudier l'intégrale J H(E)dE,

. . n(M(4))
il est indispensable d’avoir I'égalité

WM(@4)) = plr(M(A))]
qui est obtenue si la projection 7 est injective sur M(A) et donc pour

A < 3 en vertu du lemme 1.7.
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