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28 R. DANSET

§ 2. Arc Mineur

On entend ici par « Arc Mineur », le complémentaire dans (A/Q)r de

l'arc majeur M(À). On désire majorer le module de la somme H(Q lorsque
t, appartient à un tel arc mineur.

Pour cela, l'hypothèse (Hl) est indispensable. On définira d'ailleurs un
ensemble T(À) c: M(A), mieux adapté à l'hypothèse (Hl) et on obtiendra, au
lemme 2.2 une majoration de | H(Q | pour £, appartenant au complémentaire
de T(A) dans (A/Q)r.

Nous aurons ainsi les moyens de démontrer le principal résultat de ce

paragraphe, c'est-à-dire le théorème 2. Enfin l'application stricte de l'hypothèse

(Hl) qui concerne des sommes trigonométriques d'un type précis nous
contraint à des précautions qui sont l'objet du lemme 1 et qui compliquent
légèrement, mais sans aucune conséquence sur les principaux résultats de ce

travail, l'énoncé du théorème 2. Ces précautions concernent le choix de la

boîte SP puis celui de la variable P.

Lemme 2.1. Il existe un sous-ensemble dense SP de /'ensemble des boîtes SP

de R" tel que, pour toute boîte SP de SP, il existe un sous-ensemble non
borné de R, noté SP(SP) avec, pour tout P élément de SP{SP) et

pour k égal à 0 ou 1, l'égalité suivante

(2.1) Zn nmP®)-\{k}) Z"n 1 p&({k}).

Remarque. Une explication romanesque du lemme 2.1 et de sa démonstration

serait la suivante.

L'adoucissement de la fonction \Pm réalisé par le produit de convolution
0*1PB, se produit au voisinage du bord de la boîte PSP. Si ce bord

est à distance > - du réseau Z" et si l'adoucissement est suffisamment

rapide (support de

point de Z".

3' +
3

par exemple il ne concerne aucun

Démonstration du lemme 2.1. Une boîte SP de R" est un n-parallélépipède
de côtés parallèles aux axes, ou encore SP {x e R" / (1 <i<n), at < xt ^ fcj.

Considérant E {(a1, bx,..., an, bn) e R2n / (1 ^z<n), at < sous-
ensemble ouvert de R2", en bijection naturelle avec l'ensemble des boîtes SP

de R", on peut définir sur E une topologie évidente et donner un sens

non moins évident à l'expression : « SP est dense dans E ».
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On peut aussi restreindre E par des conditions supplémentaires comme,

par exemple :

Max (bt — at) <1 ou Max (| at |, I b{ |) < M
i

Définissons alors l'ensemble ^ — {B e E \ (al9 bl9..., an9 bn) est une famille
finie de nombres réels linéairement indépendants sur Q}.

Pour des raisons de dénombrabilité, est dense dans E.

Soit maintenant B e Sf \ le théorème de Kronecker (cf. Hardy and Wright,
"The theory of numbers", Oxford Press, Théorème 444) dit justement que,

pour tout s > 0, il existe un sous-ensemble non borné de R que nous
noterons &z(ß) et tel que, pour tout P e et pour tout /e{l,
on ait

Pat < 8 et Pbt -
1

< 8

1 1"

~3'+ 3
onEn choisissant 8 — et le support de 0 inclus dans

6

se convaincra que

{xeZ" I 0 * lpa(x)#lPäs(x)} 0
ce qui constitue le résultat de ce lemme.

Définissons maintenant, pour À > 0, l'ensemble

T(A) © e A" | | ^ | <2(0 < et Q(0 <

où, mais il s'agit d'un rappel

e© riMaxai^i,,).
p

Puisque nous avons g© > 1, l'inégalité

I U I Ô© < P~d+A

entraîne l'inégalité

IUI < P~d + A

:t on obtient donc: T{A)c M(A).Cesensembles A) sont bien adaptés à
l'hypothèse (Hl) comme le montre le lemme suivant.

Lemme 2.2. Avec les notations précédentes et sous l'hypothèse (Hl),
pour tout ^ e Ar telque
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(2-2) n&tn{T(Aj),
où 7i est la projection canonique de Ar sur (A/Q)r, on a, pour toute
boîte pour tout P g ^(ß) et pour tout s > 0, l'inégalité

(2.3) « P"-A" + e.

Démonstration. Dans une première partie, on réécrit la somme H(Q
sous la forme d'une somme trigonométrique S(oc) pour un a convenable.

Dans une seconde partie on applique J'hypothèse (Hl) à cette somme S(a).

Ve partie. Nous savons que, par définition, nous avons l'égalité

H® X <p(x)i|/(<Ç,/(x)>).
xeQ"

Puisque, pour tout entier premier p, on a cpp lz», la somme peut se

réduire aux x g Z".

Puisque J e ^ et P e ^(^), l'égalité (2.1) nous permet d'écrire la relation

(2.4) H{Q= Y^(<^,/(x)>)n«<^,/W>).
xePMn Zn P

Suivant alors une remarque qui a déjà servi dans la démonstration du
lemme 1.2, nous pouvons remplacer £p par la partie polaire de son
développement hensélien puisque f(x) g Zr et que le caractère \|fp est trivial sur Z^.

Cette partie polaire s'écrit

p, i
avec les conditions qui la caractérisent

o < < <ï(Çp) (l<ï<r),
pgcd(ap x,ap>1., p) 1,

fâ,) Max (1,|
1

On obtient alors l'égalité

(2.5) H(r) Y. exp(2i7r < - /« > •

xePÛSnZ" P

Comme il n'y a qu'un nombre fini d'entiers premiers p, tels que
q(^p) > 1 ou, ce qui est équivalent, ap ^ 0, la somme figurant dans l'exposant
ci-dessus a un sens.
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De plus, pour ce nombre fini d'entiers premiers p, on a q(^p) pa

avec oc ^ 1, donc le p.p.c.m. de différents q{^p) n'est autre que leur produit.

On obtient ainsi

£ "TiTT tÊ (élément de Qr)
v 4©>) 2©

avec

2© n <?©)
p

et

pgcd(a1(^),ar©, 2©) 1 (on ne considère que les a©) 0)

0 C a,© < m (l<Kr).
Il vient donc

(2.6) H© J! exp(2/7i< -£© + f(x)>)
xePÛSnZ"

L'égalité (2.6) montre que la somme H(ty est une somme trigonométrique

CY \ A +
a© eS(oc) pour g 0 et a —— - ^.2©

2e partie. Soit À > 0, supposons que oc, trouvé ci-dessus, soit dans le cas ii)

de l'hypothèse (Hl), c'est-à-dire qu'il existe - élément de Qr
Q \q qj

tel que :

0 ^ at < q (1 ^z^r),
pgcd(ûq,..., ar,q) 1

1 ^ q ^ PA,

jocf - -K -P~d + A (l<i<r).

L'ultime condition est équivalente à l'inégalité

1
(2.7) y m a

2© q
< - p-

q

Considérons l'élément i de Ar tel que i c — —— + -2© q
'
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Puisque, pour tout entier premier p, on a £, — —7^-) eZJ,, on obtient
\ VAS/ / p

ô(0 ôQ q.

En conséquence, l'inégalité (2.7) devient

Koolß© < P~d + A;

comme de plus

1 Q(Q PA

on constate que Ç e T(A). Enfin, puisque (Ç — %) e Qr, on obtient

H(Q et *£) g tc(T(A))

Si, maintenant, nous imposons la condition 7i(^) £ tu(T(à)), alors, par
contrapposée, oc n'est pas dans le cas ii) de l'hypothèse (Ell); il est donc
dans le cas i), d'où l'inégalité

\H{Q\ « P"-^+e

qui achève cette démonstration.

Nous avons encore besoin d'un majorant de la mesure de T(À) qui est

l'objet d'un dernier lemme.

Lemme 2.3. On a Finégalité

(2.8) fi(T(A)) < p-rd + (r+l)A^

Démonstration. Dans la démonstration du lemme 2.2, nous avons vu que,

te Ar étant donné, on connaît alors LeRr et e Qr, ce dernier nem
dépendant que des pour tout p entier premier.

Réciproquement le couple (^, 7777 définit E, modulo Yl Zrp.
\ ü(s) / p

a /a1 ar\ _Pour - —,..., — e Qr et tel que
q \q qj

0 < at < q (l^i^r),
pgcd (au...,ar,q) 1
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On définit

rflf4(A) { Ç e Ar | a© et 2©
et IUI ß© < P'd+A

Alors on obtient

viraA)) H«({ X e Rr | | x | «S - p-" + Ä }) n M^) «" P~
q p

De plus, on vérifie facilement que pour (a, q) ^ (ai, qx) on a

TM(A)nrûMl(A) 0
et on a aussi

T(A)= U vTaJA).
l^q^PA a

De ces trois dernières relations résulte le calcul suivant

\tm)= I I q-'P-'d+Ar
l^q^PA 0 ^ai<q

pgcd(ûi, ar, q)= 1

< I I q-'P"d+'A
1 ^q^PA 0 ^ai<q

p — rd + (r + 1)A

le lemme 2.3 est donc démontré.

Nous pouvons désormais démontrer le principal résultat de ce

paragraphe 2.

Théorème 2. Avec les notations précédentes et sous les hypothèses (Hl)
et (H2), pour toute boîte pour tout P e 0>(ß) sous-ensemble non

rd
| borné de R, pour tout v g Zr, pour tout À tel que 0 < À <

r + 1

il existe 52 > 0 tel que

tf©\|/(<Ç, — v>) d^ 0(Pn~rd~62).
(A/Q)r — n(M(A))

Démonstration. Puisque T(À) cr M(A), il suffit de montrer que

| H© | dE, 0(P"~rd-52).
(A/Q)r — n(T(A))
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Choisissons À tel que 0 < À ^ puis définissons une suite
r + 1

A0 A < Ai < < A* ——
r + 1

obtenue en fixant 5 > 0 tel que

(2.9) Q - r - 1 > 25A-1

et

(2.10) ^5 > (r+l)(Af + 1— At) pour 0 ^ t ^ N — 1

Une telle suite existe puisque, en vertu de l'hypothèse (H2) on a

Q — r — 1 > 0, et Ô est d'autant plus petit que A est lui-même petit. Puis,
ô étant choisi en fonction de l'inégalité (2.9), on peut définir (Af + 1 — A,)
à partir de l'inégalité (2.10) et obtenir enfin la valeur de N. Il est important
de remarquer que ô et N sont indépendants de P.

rd
La raison du choix de A^ vient du calcul suivant et du lemme 2.2.

r + 1

J (A/Qr-n(T(AN))

Mais l'inégalité (2.9) donne

| tffë) | à\ « pn-ANn+£ d^ <<: pn-J^Y
rd

-T7fi + £

r

donc

rd
n —

A

< n — rd — 25-1-8

r + 1

d'où l'inégalité

(2.11) i m i d\% « F
J (A/Qr-n(T(AN))

Par ailleurs, on calcule ce qui suit, pour chaque t tel que 0 < t ^ N— 1,

et en utilisant les lemmes 2.2 et 2.3
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H© I dï «
n(r(Ae+i))-n(r(At))

on — AtQ + e <%>

n(T(At+1))

« P~rd + (r+ 1)At + 1 + E
<<c pn-rd + (r+ 1) (At+i-At)-At(n-r- l)+e

Mais l'inégalité (2.10) aidant ainsi que l'inégalité (2.9) qui entraîne

(Q-r-l)A, > {Q1)A > 25.

On obtient l'inégalité

(2.12) Hlç) I dl « Fn — rd —yô + e

n(T(At + i))-n(T{At))

En réunissant l'inégalité (2.11) et les inégalités (2.12) dont le nombre N

ne dépend pas de P, il vient

H© | à£ « Pm — rd—f 5 + e

(A/Q)r-Jt(T(A))

On peut enfin choisir e — et ô2 ô pour achever la démonstration du

théorème 2.

Remarque. La démonstration du théorème 2 est classique: voir, par
exemple, Birch lemme 4.4.

Remarque. Pour de grandes valeurs A, la restriction de la projection n
à l'ensemble T(À) n'est pas injective.

Ceci ne présente aucun inconvénient pour la démonstration du théorème 2,

puisque l'inégalité

p(T(A)) > p[n(T(A))]

est dans le bon sens.

md^
n(M(A))

Au contraire, au paragraphe 1, pour étudier l'intégrale

il est indispensable d'avoir l'égalité

|i(M(A)) |i[n(M(A))]

qui est obtenue si la projection n est injective sur M(A) et donc pour
«

à
A < - en vertu du lemme 1.7.
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