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10 R. DANSET

Théorème 3. Sous les hypothèses (Hl) et (H2), il existe ô3 > 0

tel que

F*(Ç)\|/(<Ç, -v>)d^ 0{Pn-rd~6a).
J Ar-M(A)

Remarque. Une conséquence du théorème 3 est que F* g L^A').

Ces trois théorèmes permettent d'obtenir la formule asymptotique désirée.

Proposition 4.1. Sous les hypothèses (Hl) et (H2), pour & et P
convenablement choisis, pour tout v g Zr, il existe Ö > 0 tel que

I <pooM A-v) + ckf"-'"-8).
jceZ"

/(x) v

Au paragraphe 4, on utilise les hypothèses (H3) et (H4) pour rendre
effective la formule asymptotique précédente. On démontre ainsi le

Théorème 4. Sous les hypothèses (Hl), (H2), (H3) et (H4), pour
& et P convenablement choisis, on a

A-v) » pn~ri.

Il résulte de tout ceci le

Théorème Principal. Sous les hypothèses (Hl), (H2), (H3) et (H4)
le système diophantien f v admet une infinité de solutions entières.

Un corollaire évident de ce Théorème Principal, pour v 0, énonce

qu'un système f répondant aux hypothèses (Hl) et (H2) observe le

Principe de Hasse fin.

Enfin le paragraphe 5, on l'a déjà compris, est consacré à des

explications complémentaires et à des exemples suivant les travaux de Birch,

Davenport et W. M. Schmidt ; mais on ne trouvera dans ce paragraphe aucune
démonstration à l'opposé des paragraphes 1 à 4 où on s'est efforcé d'être le

plus complet possible.

§ 1. Arc majeur

Le but de ce paragraphe est une bonne majoration de la différence

entre la somme H(Q et l'intégrale F*(£) lorsque Ç appartient à un arc

majeur M(A).
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Pour cela on utilise la formule de Poisson (1.1) généralisant ainsi la

démonstration de Lachaud dans son théorème 2.9.

Les lemmes 1.1, 1.2 et 1.3 concernent les places finies, ne font appel

qu'à l'hypothèse (Hl) et obtiennent une majoration intermédiaire qui dépend
essentiellement de la place infinie.

Cette dernière est l'objet, au cours des lemmes 1.4, 1.5 et surtout 1.6,

d'une démonstration particulièrement technique, c'est-à-dire réservée au
lecteur courageux, mais qui utilise seulement l'appartenance de é, à un arc
majeur. On obtient ainsi une majoration suffisamment bonne pour la démonstration

du théorème 1 qui termine ce paragraphe.
Soit l'application h qui, à tout élément x de A", associe le nombre

complexe

h{x)(p(x)\J/(<Ç,/(x)>).

L'application h dépend du paramètre é, e Ar, mais, par commodité, celui-ci
n'est pas écrit. Comme h est une application de Schwarz-Bruhat, la formule
de Poisson suivante est vraie :

(1.1) Z h(x)Z Ky)
xeQn yeQ"

h(y) (p(x)\|/[ < Ç, /(x) > + < x, y > ]dx

Pour une justification de cette formule de Poisson on peut se référer
à: Godement, « Adèles et idèles » cours I.H.P.

Puisque les fonctions cp et \|/ sont décomposables, il en est de même
de h et de h, ainsi h(y) h^ly^) ]^[ hp(yp), où « Y[ » désigne le produit sur

p p
toutes les places finies.

Lemme 1.1. Posant q Max(l, | |p), on a

(L2) hp(yp)q~"Y,*p(<t,P,m> + <y„u>)
ue(Zp/qZp)"

si ypeq~iZnp,

U-3) =0 si yptq-1Z"p.
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Démonstration. Puisque cpp(xp) lzjfcp)» on a

hp(Xp) ^ip(<^„, f(xp)> +
J z"

avec u décrivant un système de représentants de (Zp/qZp)n.
Mais la fonction qui, à xp, associe \)/p(<£p,/(xp)>) est constante sur

les classes modulo q Znp. Car, en prenant v élément de Zp, on a

Or xpeZnp, veZnp et toutes les dérivées (même divisées par \k\\,
où | /c | désigne, selon l'usage, la somme des ordres des dérivations partielles
selon les Xj) sont des polynômes à coefficients entiers. De plus, q est

présent avec un exposant au moins égal à un dans chaque terme de la
formule de Taylor; donc fi(xp + qv) — f(xp) e q Zp et, compte tenu de la
définition de q, on a

< : f(xp+ qv)- f(xp)>£ %i,P {fi (xp + qv)- f (xp

et par la formule de Taylor,

f(xp + qv)-f(xp) £ — +

<Z>p, f(xp + qv)- f{xp)> e

et donc

typ(<ï,p,f(Xp + qv)>) v|

puisque le caractère \Jjp est trivial sur Zp. Ainsi,

iip(<xp,yp>)dxp

ZvI/p(<^p' /(")> + <yP> ">) \|ip(<Xp,y„>)dxp
u

car dxp est une mesure de Haar. Enfin

,n
iip(<xp,yp>)dxp q " si ypeq lZnp,
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puisqu'il s'agit de l'intégrale, pour une mesure de Haar, d'un caractère sur

un sous-groupe de Qp. On obtient ainsi le résultat annoncé pour hp(yp).

Lemme 1.2. Sous l'hypothèse (HI) on a

(1.4) \hP(yP)\ « <pp{qyP)q~n+s

Démonstration. Rappelons que qMax(l, | fp).

Soit ypiq~1Znp,comme cpp lz£, on a: cp 0. Mais, d'après

l'égalité (1.3), on a aussi hp(yp) 0 donc l'inégalité (1.4) est vraie dans

ce cas.

Soit ype q~1Z"p,ilvient <p p(qyp)1. En utilisant l'égalité (1.2) et l'iso-

morphisme bien connu entre Zp/qZp et Z/qZ, on obtient

(1.5) hp(yp)q'"£Vl/P(<^> /(")>+ «>) •

ue(Z/qZr

On peut ici remplacer Z,p par tout élément de sa classe modulo Zrp et,

en particulier, chaque peut être remplacé par sa partie polaire, dans

son développement hensélien qui est de la forme ~ avec pgcd (a1,..., ar, q) - 1

puisque q Max (1, | \ p).

En désignant par la boîte unité usuelle de R", l'identité (1.5) devient

fj(u)+ <yP>u>j(1.6) hp(yp) q"£exp
ueqS8or\Zn

On reconnaît une somme S(oc), au sens du paragraphe B de l'intro-
ai\

duction, en prenant M — P q, a — (l^z^r) et g{u) <yv,u>\qj
avec d°g 1 < à\ cette dernière condition, concernant g, a été précisée

au moment de la définition des sommes S{a); on trouvera l'explication de

son existence au paragraphe 5A).

Un point important est que la majoration qui va suivre ne dépend pas
des coefficients de g ; elle est donc uniforme en yp.

Les inégalités du cas ii) de l'hypothèse (Hl) sont ici

\ q'ai-a'iq\ ^ q1~d + A
(1 ^i^r) et 1 ^ q' ^ qA

elles sont insolubles pour À < 1. En effet, dans ce cas et puisque d ^ 2

on a 1 — ù + A < 0 d'où q'ai — a\ q 0 (l^z'^r) (comment être entier
et de valeur absolue < 1
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On aurait donc — —f mais aussi q' < q ce qui contredit pgcd(a1,ar, q)
q q

1 ; donc le cas ii) est impossible et on se trouve dans le cas i) de

l'hypothèse (Hl). Ainsi pour tout s > 0 et pour 0 < À < 1, on a

\hp(yP)\«q~An+z.

D'où le meilleur résultat qui puisse s'en déduire

I hp(yp)l«q-Q + *.

L'inégalité (1.4) est donc vraie pour toutes les valeurs de yp.

La fonction Q(fy ]^[ Max(l, | \p) a déjà été définie au paragraphe D
p

de l'introduction. Il ne s'agit pas vraiment d'un produit infini puisque, pour
tout E, élément de Ar, les facteurs différents de un sont en nombre fini.

Cette fonction interviendra souvent dans ce travail. Il a déjà été dit dans

l'introduction, mais il est bon de le rappeler, qu'elle ne dépend pas de

Remarque. Pour tout entier premier p0, on a

m Max(l, | t,po|po)J] Max(l, \ %p\p)
PtPO

mais, pour tout p # p0, la quantité Max(l, \^p\p), qui est une puissance de p,
est une unité p0-adique. Donc, puisque cpP0 — lz^, on peut écrire

(1-7) 9p„(ôté)yJ <Ppo (yPOMax(l,11 | J).

Lemme 1.3. Avec les notations précédentes et sous l'hypothèse (HI), on a,

pour tout E, e Ar, l'inégalité

| H& - F*& I « Q&~n+e Z I Lim-'z) I

zeZ"
zf o

Démonstration. On a, par définition de la fonction F* :

F*& cp(x)\|t(<%, f(x)>)dx 0)

donc, en utilisant la formule de Poisson (1.1), on trouve que

ff(9-F*(9 I hjyJUKiyp)-
yeQ" P

yf 0
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Avec l'inégalité (1.4) du lemme 1.2 et l'égalité (1.7) de la remarque ci-

dessus, il vient

(1.8) | H(cj - F*® | « X | hjy) I n <t>,(myP)m-a+'
yeQ" P

yf 0

Bien sûr la fonction Q© ne dépend ni de l'indice p, ni de y g Q" — {0} ;

de plus, à cause du produit cpp(Q©j>p) et de l'égalité cpp lzn, la somme
p

(1.8) peut se réduire aux y tels que Q[Qy g Z". On obtient donc

(1.9) i #© - F*© i « e©-Q+e E i Lim^z) i.
zeZ"
z? 0

Il faut désormais majorer la somme présente dans le membre de droite
de l'inégalité (1.9) et qui ne concerne que la place infinie. C'est l'objet des

lemmes 1.4, 1.5 et 1.6 qui suivent.

Soit u une fonction de Schwartz sur R". Pour tout t élément de [0, 1]",
nous noterons u* la fonction définie par

u*(t) Yj u(x + 0 •

xeZn

Lemme 1.4. Avec les notations précédentes, on a

Z I %) l2 f l "*(012dt
eZ» J [0, 1]"yeZ'

Démonstration. Appliquons à la fonction u* l'égalité de Parseval-Bessel ;

on trouve

u*{t)\2dt Z I "p
[0. U» peZ"

OU

[0, 1]"

est le coefficient de Fourier d'indice p de la fonction u* ; par suite

< Z u(x + t)e2in<p,t>dt,
[o,ir

car l'interversion de la sommation et de l'intégration est justifiée puisque u
est une fonction de Schwartz. Posons z x + t ; il vient
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K E e

xeZ"

— 2 in<p,x> u(z)e2i%<p,z> dz;
* + [0, 1]"

mais si <p, x> e Z, on a i; <f0ù

u(z)e2 p,z> dz û(-p)

et finalement

I \ u\y)\2
yeZn

U*(t) | 2dt
[0,1]"

Soit maintenant P0(D) l'opérateur différentiel associé au polynôme
homogène en n variables, de degré k 2s

Poix,,-, xn)

Selon l'habitude, le symbole [a] désignera la partie entière du réel a.

Lemme 1.5. Avec les notations précédentes et pour k

l'inégalité

+ 2, on a

E I "W l «
yeZn
yf o

[P0(D)uf{t) |
2 dt

[0,1]"

1/2

la constante impliquée par le symbole « « » dépendant seulement de k et

donc de n.

Démonstration. Une propriété classique de la transformation de Fourier
s'écrit

(P0(D)u)A(z) P0(2inz)û(z)(2

Appliquant le lemme 1.4 à la fonction de Schwartz (P0(D)u), il vient

I (^o(ß)")*(f) \2dtEl (Po(D)u) {y) |2
[0, 1]"

(27t)2* E I 12

yeZ"
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Pour que la série £ -——rj soit convergente, il faut que l'on ait

yeZ"
I "o(y) I

yf o

2k ^ n+1, ce qui, pour k entier, est obtenu lorsque k ^ + 1 ; mais on sait

que k est un entier pair d'où la condition, valable pour tout n,

k ^ + 2.

Appliquons alors l'inégalité de Cauchy-Schwarz aux deux séries de carré

1

sommable, X I PfcW) I et X On trouve
n

I 0\Z) I

zeZ"
z ^ 0

zeZ'
z ^ 0

X i "(z) 1

.zeZ"
z ^ 0

X I A>(?)"(j') I

-yeZn
yf 0

I 1

-yeZ'
yf o

„
I PoOOI'

Comme Po(0) 0, on a X I po(y)ûb>) 12 Z I Cy)%) 12 et donc
yeZn yeZn

yf o

X I "001 «
yeZn
yfo

| {P0{D)u)*(t) |
2 A

[0,1]"

1/2

La constante impliquée dans le symbole « « » provient de (2n)2k et de

r, et dépend donc seulement de k (donc de n) et de P0.x -X ipoWi-
yfo

Comme on peut toujours multiplier P0 par un coefficient arbitraire,
le symbole « « » pourrait même être remplacé par « < » pour des polynômes
P0 convenables.

Remarque. Les lemmes 1.4 et 1.5 constituent la généralisation à n variables
du lemme 2.11 de Lachaud.

Corollaire. Soit le réel a > 1, soit la fonction t>(x) u(ax); alors
avec les conditions du lemme 1.5, on a

(1.10) - X I "(y/a) I «
ye Zn
yf o

LJ [o,i]"
(P0(D)v)*(t)|

2 dt
1/2
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Démonstration. On a

et l'inégalité (1.10) s'obtient en appliquant le lemme 1.5 à la fonction v.

Reprenons, au lieu de la fonction u des deux lemmes précédents, la

fonction hœ(x) (pO0(x)exp~2in<^«>,f{x)>; rappelons que 9^ 8* 1PB (produit

de convolution) avec 0, fonction C00 à support compact aussi petit que le

besoin s'en fera sentir et voisinage de 0. De plus, nous imposerons 0^0
et, par commodité, 0 paire.

Comme \Pm est la fonction caractéristique de la boîte P^, la fonction

cp^ apparaît comme un « adoucissement » C00 des discontinuités évidentes

de \pm

On notera, comme dans tout ce travail, | I SUP I

00
I

• Enfin le
i

lecteur doit distinguer le polynôme P0 qui intervient dans les lemmes 1.4,

5 et 6 de la variable P qui figure dans tout ce travail.

Lemme 1.6. Avec les notations précédentes et sous les conditions

(1.11) I ^00 I < P~d + A et g(Ç) ^ PA avec 0 < A < 1

On a

(1.12) Z \K{Q&~1z)\«ßß)EI+ 2p"-1+\
zeZn
z^O

Démonstration. Sa longueur nous contraint à la scinder en une introduction,

une partie A, une partie B et une conclusion.

Introduction. Soit la fonction v(x) hœ(ax) u0(x)v0(x) produit des deux

fonctions

u0(x) exp( — 2(71 < Ça,, /
et

^oM <Poo(û*) •

Pour étudier la fonction P0(D) (u0v0), on utilise la formule de Leibniz

(1.13) P0(D) (u0v0) X (DJ"o) {PoU\D)v0) (j !)" 1

UK*
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dans laquelle les notations utilisées sont classiques : le multi-indice

j (Ji J'J est tel que 0 ^\j\ j1 + + jn < k (rappelons que

k d°P0), P0U) désigne la dérivée DjP0 du polynôme P0, DJu0 désigne la

dérivée d'ordre j de la fonction u0, enfin on a

j]- h -jn !;

on trouvera une justification de cette formule de Leibniz, par exemple, à la

page 10 du livre d'Hörmander, « Linear partial differential operators »

(Springer, 1962).

Le nombre de termes dans la somme du membre de droite de l'égalité
(1.13) dépend seulement de k et donc de n puisqu'en définitive on posera

n
- + 2; ce nombre de termes est donc indépendant des variables a,k

Ç et P.

Il faut maintenant étudier chacun des termes de cette somme. Nous
distinguerons le cas général où j ^ 0 (partie A) du cas particulier j 0

(partie B).

Partie A. Cas j ^ 0.

La fonction Dju0 est une somme de termes qui sont de la forme
C{x)uQ{x), où C(x) est un polynôme obtenu comme produit, pour des multi-
indices s non nuls, de polynômes dérivés Ds( — 2nr<^00, f(ax)>).

Pour mieux comprendre la phrase précédente, voici un exemple dans le

cas j (2, 1, 0,..., 0) obtenu en posant w — 2îtu<Ç00, f(ax)> :

ô3 d3w ô2w ôw d2w dw
e e H ew + 2 ew

ôx\dx2 ôxfôx2 dxf dx2 dx1dx2 dx1

dw dw dw
H ew

dx± dx1 dx2

On y trouve cinq termes de la forme annoncée, on peut donc trouver
plusieurs fois le même C(x); le dernier terme écrit correspond aux multi-
indices Si (1, 0,... 0) s2 et S3 (0, 1, 0,..., 0), on peut donc trouver
plusieurs fois le même multi-indice s dans un polynôme C(x).

Clairement le nombre de termes nécessaires pour écrire ainsi la fonction
DJu0 dépend de; et, puisque |; | ^ k, ce nombre est borné indépendemment
de a, ê, ou P. Enfin, le cas j 0, et lui seul, échappe à ce qui vient
d'être dit et c'est la raison de son exclusion.

Lexpression w —2in<d)O0,f(ax)> est un polynôme homogène en x
(de degré d), en a (de degré d), en ^ (de degré 1). Ainsi a-t-on l'inégalité
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(1.14) I D%w)\«ad\x\d~W \^\
valable pour 1 ^ | s | ^ d ; pour | s | > d on a bien sûr Ds(w) 0 et la
constante sous-entendue par l'inégalité (1.14) dépend des coefficients des

formes du multi-indice s mais ne dépend pas de x, a ou P.

Comme nous étudierons la fonction (Dju0 P^)(D)i;0)* et comme v0(x)

(Poo(ax), on ne fera usage de l'inégalité (1.14) que pour des x g R" tels

P
que | x | « —, la constante impliquée par cette dernière inégalité dépendant

a

de la fonction 0 et de la boîte & mais non de x, a ou P. Plus
précisément, il existe ß > 0, dépendant de 0 et de 3# tel que le support de la

fonction (pœ soit inclus dans la boule de centre 0 et de rayon ßP.

Donc pour tout t élément de [0, 1]" et pour tout x tel que

(1.15) |x|^ß-+la

on a

| x + t | ^ ß-
a

et donc {ax -h at) $ Support de cp^, et a fortiori (ax + at) $ Support de

P$ (D)cp0o ; comme de plus

{Ptf(D)v0)(x)aW(p<é>(Dypj(ax)

on obtient pour tout te[0,1]" et tout x vérifiant l'inégalité (1.15):

(1.16) (P$ (D)v0) (x + t)0

Mais, et c'est un point essentiel de la démonstration, puisque À < 1,

on aura

a ^ PA < P

P
et — est donc beaucoup plus grand que 1 dans les conditions du lemme.

a

En posant, par exemple, a ß 4- 1 on constate que tout x tel que

P
I x | ^ oc —

a

satisfait à l'inégalité (1.15) et, par suite, à l'égalité (1.16).
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P
Ainsi, pour | x | « —, l'inégalité (1.14) devient l'inégalité

| Ds(w) \ « a|s| Pd"|s| I U I
•

Comme l'une des hypothèses du lemme est

\%»\ < P"d+à

on obtient

| Ds{w) \ « als| P~|s|+A

et donc

(1.17) \C(x)e-2i*<^fiax)>|« I] «|S|^"|S| + A-

certains s

Définissons la fonction

N(x)(x) C(x)w0(x).

En tenant compte de l'égalité (1.16), valable pour | x | » — et de

l'inégalité (1.17), il vient

N*(t) | « Yi flisi p-\sI+a
Lcertains s

E \(PW(D)v0)(x

(1.18) « (n«is| p_|s|+v-"

JceZ"
P

1*1 «7

E \{P,é)(D)<pao)(ax +

Dans cette dernière ligne, l'exposant total de la variable a est

\j\+E M -
certains s

parce que le polynôme P0 a été choisi homogène. De plus, la fonction
P(0J)(D)(pOCj est bornée, indépendemment de a, £ ou P, comme le montre le

calcul suivant

\(P^(D)cpjMI | Q(t — x)lPm(x)dx

(Ptf(D)Q)(t-x)lP3S(x)dx |

R"
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{P^(Dß) (x)lPJt-x)dx\
R"

(py>(D)e) (x)\dx.

Cette dernière intégrale existe puisque 0 est C00 à support compact,
sa valeur ne dépend ni de a, ni de £, ni de P.

Il en résulte que

| (ax + | « ^
xeZn

\x\<P/a

la majoration obtenue étant une estimation classique (à une constante près
du nombre de x e Z" et tels que | x | « P/a.

En reprenant l'inégalité (1.18), on obtient

\N*(t)\ « ak~n Pn+&A~bl).

Dans cette dernière inégalité, la somme qui figure dans l'exposant de

la variable P comprend au moins un terme. Comme, de plus, on sait que
À < 1 et | s | ^ 1, on trouve que

BA-M) < - 1 + A
S

l'égalité pouvant avoir lieu, par exemple lorsque \j [ 1. Il s'ensuit que

(1.19) \N*(t)\ « ak~n Pn~1+A.

Nous avions dit, au début de cette partie A, que la fonction Dju0

était une somme de termes de la forme C(x) ew, le nombre de ces termes

étant majoré indépendemment de a, i; ou P. Il est aussi clair que l'application

qui associe, à une fonction de Schwartz u, sa « périodisée » m*,

est une application linéaire. Dans ces conditions l'inégalité (1.19) devient,

pour tout j 0,

(1.20) | (.Dju0 Pu\D)v0)*(t) | « ak~n p»~1+A.

Partie B. Cas 7 0.

On a déjà dit que la démonstration de la partie A ne pouvait servir
dans ce cas puisque celle-ci repose sur l'existence d'au moins une fonction
dérivée Ds(w), avec \s \ ^ 1, en facteur de la fonction ew.
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On a tout d'abord, puisque | D°u0 | | ew | 1,

| (D°u0 P0(D)v0)*(t) | < £ | (P0(D)v0) (x + t) |

xeZn

E I (^o(ß)9co) )I
xeZn

Comme le polynôme P0 est homogène de degré k ^ 1, la fonction
P0(Z))(poo est combinaison linéaire de dérivées de (pœ, mais non de (pœ

elle-même ; or toutes ces fonctions dérivées sont nulles dans les domaines où

(pœ est constante.
Soit H le tube dont la base est le bord de la boîte P& et dont

l'épaisseur est ^ 1. Puisque nous savons que cp^ 0 * lpm et que le support
1 1"

de la fonction 0 est, par exemple, inclus dans -2' +
2

il en résulte

que la fonction cp^ est constante dans le complémentaire de H.
Il est clair que le volume de H est de l'ordre de la surface de la

boîte PïM c'est-à-dire que

vol(H) « P"-1 ;

et le nombre d'éléments x de Z", tels que (ax + at) g H, est donc «
Il vient donc l'inégalité

(1.21) (D°u0 P0(D)v0)*|« k-n un - 1

Conclusion: Reprenons la formule de Leibniz (1.13); grâce aux inégalités
(1.20) et (1.21), on trouve

| (P0(D)v)*{t) | «a'"T"1+i
avec, rappelons-le, v(x) h jax).

En appliquant maintenant le corollaire du lemme 1.5, on obtient

L I fcj-ll « akP"~1 + A

yeZ»
^ a ï

yf o

Prenant enfin a Q(£) ^ 1 et k

de ce lemme :

+ 2, on obtient le résultat

I I hjQC^-'z) | « Ôfê)EI + 2 P"-1+i
zeZ"
z + 0
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Remarque. Dans cette dernière majoration, on ne peut espérer mieux que
pn-i+A ce n>est peut_être Pn~i ou pn_1+e5 pour tout s > 0, de peu
d'avantage puisque cette majoration sera utile dans le cas où À est très petit.

En effet, pour ^ 0, on a

K (y) 9 oo (y) %) îp/y)

avec

"pftk

ipp(y) — e-2in<x,y>dx
i k=î J

e~2inxkyk ^Pak

si on a défini : {(xq,..., xj e R" | ak ^ xk ^ bk, 1 ^ k ^ n}

De plus, on a

(* Pbk

e ~ 2in Xk yk dxk (2inyk) ~1 [e~ 2in yk Pak - e~ 2in yk k] si yk ^ 0
Pak

P(bk-ak),si0.

Donc, lorsque P oo, les termes prépondérants dans la somme

E 10MI I WjO \

y<=Z"
yfO

sont clairement ceux tels que tous les yk soient nuls sauf un et ces termes

sont de l'ordre de F1-1.

Au contraire, si on fait intervenir la variable a dans le précédent calcul
et sous les conditions 1 ^ a ^ PA et A < 1, on est conduit, les termes

prépondérants restant les mêmes, à une estimation en (a Log a) qui indique

la médiocrité du at"]*2 obtenu.

Heureusement cette puissance + 2 de la variable a Q(^), qui est
n

_2_

donc probablement trop grande, n'aura aucune conséquence fâcheuse dans la

suite de ce travail parce qu'il sera toujours possible de prendre A aussi petit
qu'on le désirera : un coup de chance qui ne se retrouve pas dans d'autres

applications de la méthode du cercle (Davenport dixit).

Au paragraphe D de l'introduction, nous avons défini, pour tout A > 0,

l'arc majeur

M(A) e A' | I Çco I < petm ^ |
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Lemme 1.7. Soitn la projection canonique de Ar sur (A/Q)r; alors,

si A<^, la restriction de % à l'arc majeur M(A) est injective pour

suffisamment grand.

Démonstration. On a les propriétés suivantes de la fonction ß(£) :

Q&+%) « Qm^)
et

fl(-Ç) S©-

Prenons £ et dans M(A), il en résulte

Q&-Ç) < Qmw < P2A

et

l^-Ç'col < l^ool + < 2P"d + A.

De plus, une conséquence facile de la formule du produit pour les

nombres rationnels non nuls est que, pour tout z e Qr - {0}, on a

I | ß(z) ^ 1

Comme nous avons obtenu

Uco-S'ool Q(^)^2P-d+3A

la conclusion s'impose pour À < - et P > 2d 3A

Remarque. Lorsque n est injective sur l'arc majeur JVf(À), les mesures de

Haar p(M(A)) et p(tt(M(à))) sont égales.

Nous pouvons enfin démontrer le principal résultat de ce paragraphe 1 :

Théorème 1. Sous les hypothèses (Hl) et (H2) et pour

-1
A < + r + 3

il existe > 0 tel que, pour tout v g Zr, on ait

F*(Ç)\|/(<Ç, -v>)^ + o(Pn~rd-6i)Hm(<^ -v>)^
n(M(A)) M (A)
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Démonstration. En utilisant le lemme 1.3, on obtient

| -v>) " F*(Ï,)M<-v>)| | - F® I

« ô©~"+£ I \L{m~1z)\;
zsZn
z?=0

puis, en vertu du lemme 1.6, pour £ g M(à) et À < 1, il vient

| Hfe) - F*(%) | « ß©_n+s+[j]+2 p»-i+A

« ô©~"+e F""1+a(H + 3)

En suivant le lemme 1.7 et la remarque qui le suit, nous obtenons, pour

A
d

À < -:3

|/(<© -v>)^ -
7t(M(A))

-v>)dÇ
M(A)

H© - F*© | dÇ

(1.22) «

Af(A)

Pw"1+a(E] + 3)

LJ l^ool^' Q(ï)^Pa
Q©-q+£ ® dÇp

L'hypothèse (H2) a, pour principal avantage, d'assurer la convergence,
quand P oo, de la dernière intégrale puisque nous pouvons choisir s tel que

0 < e < Q — r — 1.

Une démonstration de cette convergence est proposée au lemme 3.3 de

ce travail.

Il reste donc l'expression

(1.23) P»-i+A(GT] + 3) p"_1+A(Cy] + 3)

IÏJ ip~d+&

m — rd — 1 + A|([2]+r + 3)

Prenons donc

A < + r + 3 < inf( 1, ^
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Posons

8X 1 — A + r + 3 > 0;

alors l'expression (1.23) et, par suite, le membre de droite de 1 inégalité

(1.22) sont des

0(p/i-rd-5i)

le Théorème est donc démontré.

Remarque. Au lemme 1.2, on peut se passer de l'hypothèse (Hl) et majorer
trivialement le résultat du lemme 1.1, on obtient, avec q Max(l, | |p):

(1-24) \hp(yp)\ < q>p(qyp).

Alors le lemme 1.3 nous donnerait seulement

(1.25) | H(Q - F*(Q | « X I Lmr1?) I
•

zeZ"
zf 0

Bien évidemment, les lemmes 1.4, 5 et 6 n'utilisent pas les hypothèses

(Hl) et (H2). Enfin on peut aussi abandonner l'hypothèse (H2) dans la
démonstration du théorème 1, quitte à rendre A encore plus petit mais nous
avons déjà dit que c'est sans importance sur le reste de ce travail. Le
iecteur vérifiera facilement que l'hypothèse

A < + 2r + 4

permet la démonstration du théorème 1 sans utiliser les hypothèses (Hl) et
i H2).

Ainsi, au paragraphe B de l'Introduction pourrait-on supprimer tout ce

qui concerne le polynôme quelconque g de degré < d, simplifiant ainsi
"hypothèse (Hl) sans rien modifier au résultat de ce travail.

Toutefois, comme l'explique le paragraphe 5A), l'hypothèse (Hl) provient
d'une méthode proposée par Weyl dont les résultats sont indépendants de
tout polynôme g de degré < d figurant dans l'expression des sommes S(a).
Dans ces conditions, la simplification envisagée n'est qu'un succès à la Pyrrhus.
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